Sains Malaysiana 49(3)(2020):
661-669
http://dx.doi.org/10.17576/jsm-2020-4903-21
Influence Mechanism of Epoxy Resin and Curing Agent
on High-Temperature Performance of Asphalt
(Mekanisme Pengaruh Resin Epoksi
dan Agen Pengawetan pada Prestasi Suhu Tinggi Asfalt)
MINGXING GAO1*, YANHUA XUE1, PENG GUAN2 &
FEILONG YUAN1
1College of Energy and Transportation Engineering,
Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
2President of Hongrui Road and Bridge Engineering Science
and Technology Research Institute, Hinggan League, Inner Mongolia, 137400, China
Received: 19 September 2019/Accepted: 4 December 2019
Abstract
To deeply show the internal reasons for the effects of
epoxy resin and curing agent on the high-temperature performance
of asphalt, nine kinds of asphalt with different content of epoxy
resin and curing agent were prepared. On
the premise of ensuring that the softening point, penetration and
ductility of epoxy asphalt no attenuation, the dynamic shear rheology
test and Saybolt viscosity test were used to examine the rutting
factor (G*/sin δ), complex shear modulus (G*), phase angle
(δ), and viscosity of asphalt with different epoxy resin and
curing agent contents. With the help of fluorescence microscopy,
microscopic morphology was analyzed, and the micro-image was further
analyzed quantitatively by using 3Dsurface and particle statistics. The results
show that adding epoxy resin and curing agent into asphalt can significantly
improve the rutting factor and complex shear modulus of asphalt
and reduce the phase angle and the viscosity growth rate of asphalt
changed from fast to slow. Fluorescence and 3Dsurface imaging results
indicate when the epoxy resin and the curing agent
are uniformly distributed and forms microflocculent structures,
the epoxy resin can fully swell in asphalt, and the fluorescence
intensity is uniform. The statistical analysis of particles shows
that the improvement in high-temperature performance of asphalt
by epoxy resin and curing agent results from the distribution of
particle area above 26.7346 μm2. The high-temperature
performance of epoxy asphalt is optimal when the content of epoxy
resin and curing agent is 6 %.
Keywords: 3Dsurface; fluorescence;
micromorphology;
particles of statistical
Abstrak
Dalam usaha secara mendalam
untuk menunjukkan sebab dalaman kesan resin epoksi
dan agen pengawetan pada prestasi suhu tinggi
Asfalt, sembilan jenis daripada asfalt dengan kandungan resin epoksi
dan agen pengawetan telah disediakan. Dalam usaha untuk memastikan
takat pelembutan,
penembusan dan
kemuluran epoksi
asfalt tiada pengecilan, ujian reologi
ricih dinamik dan ujian kelikatan Saybolt digunakan untuk memeriksa
faktor rut
(G*/sinδ), modulus ricih kompleks (G*), sudut fasa (δ) dan kelikatan asfalt resin epoksi berbeza serta kandungan agen pengawetan. Dengan bantuan
mikroskopi pendarfluor,
morfologi mikroskopi
telah dianalisis
dan imej mikro dianalisis lebih lanjut secara kuantitif menggunakan statistik
3Dsurface dan statistik zarah. Keputusan menunjukkan
bahawa penambahan resin epoksi dan
agen pengawetan ke dalam asfalt boleh menambah baik secara signifikan faktor rut dan modulus
ricih kompleks asfalt serta mengurangkan sudut fasa dan kadar pertumbuhan
kelikatan asfalt berubah daripada laju kepada perlahan. Pendarfluor dan
keputusan pengimejan 3Dsurface menunjukkan apabila resin epoksi dan agen
pengawetan diagihkan secara seragam dan membentuk struktur mikroberflokulasi, resin epoksi boleh membengkak sepenuhnya
dalam asfalt dan keamatan kependarfluoran adalah seragam. Analisis statistik
zarah menunjukkan pembaikan dalam prestasi suhu tinggi
asfalt oleh
resin epoksi dan agen pengawetan hasil
daripada taburan kawasan zarah di atas 26.7346 μm2. Prestasi suhu tinggi asfalt epoksi adalah optimum
apabila
kandungan
resin epoksi dan agen pengawetan adalah 6%.
Kata kunci: 3Dsurface; pendarfluor; mikromorfologi;
zarah statistik
REFERENCES
Ahmedzade, P. 2013. The investigation and comparison effects of SBS and
SBS with new reactive terpolymer on the rheological properties of
asphalt. Construction and Building Materials 38:
285-291.
Cabanelas, J.C., Serrano, B., Gonzalez, M.G. & Baselga, J. 2005. Confocal
microscopy study of phase morphology evolution in epoxy/polysiloxane
thermosets. Polymer 46(17):
6633-6639.
Chen, X., Li, C., Jiang, Y., Zhang, W. & Xu, G. 2019. Comparisons with
high viscosity additive effects on base and modified asphalt. Petroleum Science and Technology 37(11):
1331-1337.
Chen, X.H., Huang, W. & Qian, Z.D. 2007. Interfacial behaviors of epoxy
asphalt surfacing on steel decks. Journal
of Southeast University 23(4): 594-598.
Cong, P., Luo, W., Xu, P. & Zhang, Y. 2019. Chemical and physical properties
of hot mixing epoxy asphalt binders. Construction and Building Materials 198: 1-9.
Cong, P., Tian, Y., Liu, N. & Xu, P. 2016. Investigation of epoxy-resin-modified
asphalt binder. Journal of
Applied Polymer Science 133(21). Doi: 10.1002/app.4340.
Cong, P., Chen, S. & Yu, J. 2011a. Investigation
of the properties of epoxy resin-modified asphalt mixtures for application
to orthotropic bridge decks. Journal
of Applied Polymer Science 121(4): 2310-2316.
Cong, P., Chen, S., Yu, J. & Chen, H. 2011b. Compatibility and mechanical properties of epoxy
resin modified asphalt binders. International
Journal of Pavement Research and Technology 4(2): 118-123.
Cong, P., Yu, J. & Chen, S. 2010. Effects of epoxy resin contents on therheological properties of
epoxy-asphalt blends. Journal
of Applied Polymer Science 118(6): 3678-3684.
Dong, Z. & Li, L.P. 2015. Study on dynamic mechanical properties and
microstructure of epoxy asphalt. Proceedings
of the 2015 International Conference on Applied Science and Engineering
Innovation 12: 516-523.
Fu, H., Xie, L., Dou, D., Li, L., Yu, M. & Yao, S. 2007. Storage stability
and compatibility of asphalt binder modified by SBS graft copolymer.
Construction and Building Materials 21(7):
1528-1533.
Hou, X. 2006. Research on the technology of powdered coal particle measurement
based on image processing. Taiyuan University of Technology.
Huang, W. 2003. Epoxy asphalt concrete paving on the deck of long-span
steel bridges. Chinese Science
Bulletin 48(21): 2391-2394.
Jun, Y., Aizhu, L.H., Dengquan, Y. & Jianwei, W.A. 2007. Evaluation of modification
effects of epoxy resin based on performance of asphalt mixtures.
Journal of Southeast University 23(1):
122-126.
Kang, Y., Song, M., Pu, L. & Liu, T. 2015. Rheological behaviors of
epoxy asphalt binder in comparison of base asphalt binder and SBS
modified asphalt binder. Construction
and Building Materials 76: 343-350.
Kang, Y., Wang, F. & Chen, Z.M. 2010. Performance optimization and
bimodal morphology of advanced epoxy asphalt.
Kui, H. 2013. Microstructure quantitative techniques and applications of
sbs modified asphalt. PhD Thesis. Chang'an University (Unpublished).
Lu, Q. & Bors, J. 2015. Alternate uses of epoxy asphalt on bridge decks
and roadways. Construction
and Building Materials 78: 18-25.
Motamedi, M., Attar, M.M. & Rostami, M. 2017. Performance enhancement
of the oxidized asphalt binder using epoxy resin. Progress in Organic Coatings 102: 178-185.
Rafi, J., Kamal, M., Ahmad, N., Hafeez, M., Faizan ul Haq, M., Aamara,
Asif, Shabbir, F. & Bilal Ahmed Zaidi, S. 2018. Performance
evaluation of carbon black nano-particle reinforced asphalt mixture.
Applied Sciences 8(7): 1114.
Sengoz, B. & Isikyakar, G. 2008. Analysis of styrene-butadiene-styrene
polymer modified asphalt using fluorescent microscopy and conventional
test methods. Journal of Hazardous
Materials 150(2): 424-432.
Si, J., Li, Y. & Yu, X. 2019. Curing behavior and mechanical properties
of an eco-friendly cold-mixed epoxy asphalt. Materials and Structures 52: 81. doi:10.1617/s11527-019-1382-5.
Sun, L., Xin, X. & Ren, J. 2017. Asphalt modification using nano-materials
and polymers composite considering high and low temperature performance.
Construction and Building
Materials 133: 358-366.
Yao, H., You, Z., Li, L., Goh, S.W., Lee, C.H., Yap, Y.K. & Shi, X.
2013. Rheological properties and chemical analysis of nanoclay and
carbon microfiber modifiedasphalt with Fourier transform infrared
spectroscopy. Construction and Building Materials 38:
327-337.
Yildirim, Y. 2007. Polymer modified asphalt binders. Construction and Building Materials 21(1):
66-72.
Yin, C., Zhang, H. & Pan, Y. 2016. Cracking mechanism and repair techniques
of epoxy asphalt on steel bridge deck pavement. Transportation Research Record: Journal of the Transportation Research
Board 2550(1): 123-130.
Yin, H., Zhang, Y., Sun, Y., Xu, W., Yu, D., Xie, H. & Cheng, R. 2014.
Performance of hot mix epoxy asphalt binder and its concrete. Materials and Structures 48(11): 3825-3835.
doi:10.1617/s11527-014-0442-0.
Yin, H., Jin, H., Wang, C., Sun, Y., Yuan, Z., Xie, H., Wang, Z. &
Cheng, R. 2013. Thermal, damping, and mechanical properties of thermosetting
epoxy-modified asphalts. Journal
of Thermal Analysis and Calorimetry 115(2): 1073-1080.
Zhang, R., Wang, H., Gao, J., You, Z. & Yang, X. 2017. High temperature
performance of SBS modified bio-asphalt. Construction and Building Materials 144: 99-105.
Zhendong, Q.I., Sang, L. & Jian-Wei, W. 2007. Laboratory evaluation
of epoxy resin modified asphalt mixtures. Journal
of Southeast University 23(1): 117-121.
*Corresponding
author; email: gaomingxing_2000@imau.edu.cn
|