Sains Malaysiana 49(3)(2020):
671-682
http://dx.doi.org/10.17576/jsm-2020-4903-22
Influence of Environmental Parameters on
Microbiologically Influenced Corrosion Subject to
Different Bacteria Strains
(Pengaruh Parameter Persekitaran ke atas Subjek Kakisan
Pengaruh Mikrob kepada Strain Bakteria Berbeza)
MUHAMMAD KHAIROOL
FAHMY MOHD ALI1, MARDHIAH ISMAIL1, AKRIMA
ABU BAKAR1, NORHAZILAN MD. NOOR1,2, NORDIN
YAHAYA1, LIBRIATI ZARDASTI1* & ABDUL RAHMAN
MD. SAM1,2
1School of Civil
Engineering, Faculty of Engineering, Universiti Teknologi Malaysia,
81310 Johor Bahru, Johor Darul Takzim, Malaysia
2Construction Research
Centre, School of Civil Engineering, Faculty of Engineering, Universiti
Teknologi Malaysia, 81310 Johor Bahru, Johor Darul Takzim, Malaysia
Received: 20 June
2019/Accepted: 4 December 2019
Abstract
Microbiologically
influenced corrosion (MIC) is capable on weakening the metal’s strength,
eventually leads to pipeline leakage, environmental hazard and financial
loss. Sulfate reducing bacteria (SRB) is the principal causative
organism responsible for external corrosion on steel structures.
To date, considerable works have been conducted in Malaysia on the
mechanisms of SRB upon MIC on the marine environment instead of
underground. Moreover,
commercial bacteria strain represents local strain in terms of performance
and behavior upon corrosion of steel structure is yet to be proven.
Thus, this paper aims to investigate the influence of environmental
parameters towards MIC in corroding pipeline. Two types of SRB strain
were used designated as SRB ATCC 7757 (commercial) and SRB Sg. Ular
(local strain) isolated from Malaysian soil. The behavior of both
strains was critically compared by calculating the rate of corrosion
upon carbon steel coupons in stipulated environmental parameters.
Four influential parameters i.e. pH, temperature, salinity concentration
and iron concentration were considered. Collected data presented
and analyzed using graphical and statistical analysis, respectively.
The results showed the difference of corrosivity between
two SRB strains in terms of corrosion behavior upon the X-70 steel
coupon. SRB Sg. Ular able to cause severe effects upon steel structure
as compared to SRB ATCC 7757 due to its aggressiveness shown by
the recorded metal loss data. Thus, future works related to MIC
for local environment in particular, should not compromise with
the type of SRB strains considered due to differences of performance
of the microorganisms onto tested environment and materials.
Keywords: Environmental
parameter; microbiologically influenced corrosion (MIC); pipeline; sulfate-reducing bacteria (SRB)
Abstrak
Kakisan Pengaruh
Mikrob (MIC) akan melemahkan kekuatan logam, mengakibatkan kebocoran
saluran paip, ancaman terhadap alam sekitar dan kerugian wang ringgit.
Bakteria penurunan sulfat
(SRB) merupakan organisma utama yang bertanggung jawab
mengakibatkan kakisan luar terhadap struktur keluli. Di Malaysia
khususnya, banyak kajian berkaitan mekanisma
SRB terhadap MIC dalam persekitaran marin telah dijalankan, berbanding
persekitaran bawah tanah. Kebanyakan kajian terdahulu menggunakan
strain komersial untuk mengkaji mekanisma SRB kerana ia
mudah didapati berbanding strain tempatan. Bagaimanapun, tiada kenyataan
khusus yang bersetuju bahawa strain komersial secara praktiknya mampu mewakili strain
tempatan sepenuhnya daripada segi penilaian
prestasi dan perilaku. Dengan itu, kajian ini dijalankan bertujuan
untuk mengkaji kesan SRB strain yang berbeza terhadap
kadar kakisan logam. Kajian ini menggunakan dua jenis strain SRB
iaitu strain komersial ATCC 7757 dan strain SRB tempatan yang
diambil dari Sungai Ular. Empat parameter persekitaran diambil kira
dalam uji kaji
ini iaitu pH, suhu, tahap kemasinan dan kepekatan iron. Data yang
dikumpulkan telah dibentangkan dan dianalisis dengan menggunakan
analisis grafik dan statistik. Keputusan kajian semasa menunjukkan
perbezaan yang amat ketara antara kedua-dua strain SRB daripada segi tahap kakisan terhadap kupon keluli
X-70. SRB Sg. Ular merupakan strain yang agresif dan ia berupaya
mengakibatkan kesan yang lebih teruk terhadap struktur keluli berbanding
SRB ATCC 7757, ini dapat dibuktikan dengan jelas melalui data kehilangan
logam yang direkodkan. Justeru, bagi mendapatkan ramalan kakisan
yang tepat pada masa hadapan, kerja-kerja yang berkaitan MIC khususnya
tidak dipandang remeh, terutama berkaitan pemilihan organisma yang
ingin digunakan.
Kata kunci: Bakteria
penurunan sulfat (SRB); kakisan pengaruh
mikrob (MIC); parameter persekitaran; saluran paip
REFERENCES
Abdullah, A. 2016. External Corrosion Growth for Buried Steel Pipeline in Environment Containing
Sulfate Reducing Bacteria. Universiti Teknologi Malaysia (Unpublished).
Abdullah, A., Yahaya, N., Noor, N.M. &
Rasol, R.M. 2014. Microbial corrosion of API 5l X-70 carbon steel
by ATCC 7757 and consortium of sulfate-reducing bacteria. Journal of Chemistry 2014: 130345.
Ali, M.K.F.M.,
Bakar, A.A., Noor, N.M., Yahaya, N., Ismail, M. & Rashid, A.S.
2017. Hybrid soliwave technique for mitigating sulfate-reducing
bacteria in controlling biocorrosion: A case study on crude oil
sample. Environmental Technology 38(19): 2427-2439.
Ali, M.K.F.M., Yahaya, N., Bakar, A.A.,
Ismail, M., Zardasti, L. & Noor, N.M. 2016. Corrosion of X-70
carbon steel pipeline subject to sulfate reducing bacteria. ARPN
Journal of Engineering and
Applied Sciences 11(21): 12643-12652.
Agostini, R.A. & Young, R.D. 1996.
A case history: Investigations of microbially influenced corrosion
in a West Texas water flood microbiologically induced corrosion
of oil and gas production system. NACE
International Publications 1996: 122-127.
Al-Abbas, F.M., Williamson, C., Bhola,
S.M., Spear, J.R., Olson, D.L., Mishra, B. & Kakpovbia, A.E.
2013. Influence of sulfate reducing bacterial biofilm on corrosion
behavior of low-alloy, high-strength steel (API-5L X80). Journal of International Biodeterioration & Biodegradation 78:
34-42.
Al-Jaroudi, S.,
Ul-Hamid, A. & Al-Gahtani, M. 2011. Failure of crude oil pipeline
due to microbiologically induced corrosion. Corrosion
Engineering, Science Technology 46(4): 568-579.
Allison, P.W.,
Sahar, R.N.R.R., Guan, O.H., Hain, T.S., Vance, I. & Thompson,
M.J. 2008. The investigation of microbial activity in an offshore
oil production pipeline system and the development of strategies
to manage the potential for microbially influenced corrosion. Paper
No. 08651. NACE International: Corrosion 2008 Conference and Expo. pp. 1-17.
Angell, P. &
Urbanic, K. 2000. Sulfate reducing bacterial activity as a parameter
to predict localized corrosion of stainless alloy. Corrosion
Science 42: 897-912.
ASTM G1-90. 1999. Standard Practice for Preparing, Cleaning,
and Evaluating Corrosion Test Specimens. ASTM International,
Pennsylvania: American Society for Testing and Materials.
ASTM G1-72. 1993.
Standard Recommended Practice
for Preparing, Cleaning and Evaluating Corrosion Test Specimens.
Annual Book of ASTM standards. Philadelphia: American Society for
Testing and Materials.
Bakar, A.A., Noor,
N.M., Yahaya, N., Rasol, R.M. & Ali, M.K.F.M. 2013. The effect
of Desulfovibrio vulgaris on the anaerobic
corrosion of carbon steel in marine environment. 12th International UMT Annual Symposium (UMTAS2013). pp. 1-7.
Beech, I., Bergel,
A., Mollica, A., Flemming, H.C., Scotto, V. & Sand, W. 2000.
Microbiologically influenced corrosion of industrial materials. Brite-Euram III Thematic Network ERB BRRT-CT98-5084
(Unpublished).
Booth, G.H. &
Tiller, A.K. 1968. Cathodic characteristic of mild steel in suspension
of sulfate-reducing bacteria. Corrosion
Science 8: 583-600.
Cao, J., Zhang,
G., Mao, Z., Fang, Z. & Yang, C. 2009. Precipitation of valuable
metals from bioleaching solution by biogenic sulphides. Mineral Engineering 22: 289-295.
Evan, E., Chart,
A. & Skedgell, A.N. 1973. The coloured film on stainless steel.
Transactions of the Institute of Metal Finishing
51: 108-112.
Fatah, M.C., Ismail,
M.C. & Wahjoedi, B.A. 2013. Effects of sulphide ion on corrosion
behaviour of X52 steel in simulated solution containing metabolic
products species: A study pertaining to microbiologically influenced
corrosion. Corrosion Engineering Science and Technology
48(3): 211-220.
Fonseca, I.T.E.,
Feio, E., Lino, M.J., Reis, M.A. & Rainha, V.L. 1997. The influence
of the media on the corrosion of mild steel by Desulfovibrio
desulfuricans bacteria: An electrochemical
study. Eletrochemica Acta
43: 213-222.
Ismail, M., Noor,
N.M., Yahaya, N., Bakar, A.A., Ali, M.K.F. & Abdullah, A. 2015.
Statistical investigation on anaerobic sulphate-reducing bacteria
growth by turbidity method. International
Journal of Biological Chemistry 9(4): 178-187.
Ismail, M., Yahaya,
N., Bakar, A.A. & Noor, N.M. 2014. Cultivation of sulphate reducing
bacteria in different media. Malaysian
Journal of Civil Engineering 26(3): 456-465.
Jacobson, G.A.
2007. Corrosion at Prudhoe Bay: A lesson on the line. Material Performance 46: 27-34.
Javaherdashti,
R. 2008. Microbiologically
Influenced Corrosion: An Engineering Insight. London: Springer.
Kakooei, S., Ismail,
M.C. & Ariwahjoedi, B. 2012. Mechanisms of microbiologically
influenced corrosion: A review. World
Applied Sciences Journal 17(4): 524-531.
King, R.A. &
Miller, J.D.A. 1971. Corrosion by the sulphate-reducing bacteria.
Nature 233: 491-492.
Kirchman, D.L.,
Malmstrom, R.R. & Cottrell, M.T. 2005. Control of bacterial
growth by temperature and organic matter in the Western Arctic.
Deep Sea Research Part II: Topical
Studies in Oceanography 52(24-26): 3386-3395.
Li, Y., Xu, D.,
Chen, C., Li, X., Jia, R., Zhang, D., Sand, W., Wang, F. & Gu,
T. 2018. Anaerobic microbiologically influenced corrosion mechanisms
interpreted using bioenergetics and bioelectrochemistry: A review.
Journal of Materials Science and Technology 34: 1713-1718.
Lv, L., Zhou, L.,
Wang, L.Y., Liu, J.F., Gu, J.D., Mu, B.Z. & Yang, S.Z. 2016.
Selective inhibition of methanogenesis by sulfate in enrichment culture with
production water from low-temperature oil reservoir. International Biodeterioration & Biodegradation 108: 133-141.
Mataqi, K.Y. &
Akbar, B.H. 2013. Sulphur cycle of microbial corrosion on carbon
steel in soil model. International
Journal of Engineering Research and Applications 3(2): 617-623.
Othman, S.R. 2015.
Modelling of external corrosion growth of steel pipeline in soil
for tropical climate. PhD Thesis. Universiti Teknologi Malaysia (Unpublished).
Rabus, R., Hansen,
T.A. & Widdel, F. 2006. Dissimilatory sulfate- and sulfur reducing
prokaryotes. In The Prokaryotes,
edited by Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H.
& Stackebrandt, E. 3rd ed. Volume 2. Singapore:
Springer Science.
Sahrani, F.K.,
Zaharah, I., Adibah, Y. & Madzlan, A. 2008. Isolation and identification
of marine sulpahte-reducing bacteria, Desulfovibrio
sp. and Citrobacter Freundii
from Pasir Gudang, Malaysia. Sains
Malaysiana 37(4): 365-371.
Santegoeds, C.M.,
Ferdelman, T.G., Muyzer, G. & Beer, D.D. 1998. Structural and
functional dynamics of sulfate-reducing populations in bacterial
biofilms. Applied and Environmental Microbiology
64(10): 3731-3739.
Strickland, L.,
Fortnum, R. & Bose, B.D. 1996. A case history of microbiologically
influenced corrosion in the Lost Hills Oilfield, Kern County, California.
Paper No. 297: The NACE International
Annual Conference and Exposition. pp. 1-20.
Stott, J.F.D. 2003.
Evaluating microbiologically influenced corrosion. In Corrosion Fundamentals, Testing
and Protection.
ASM Handbook, USA: ASM International, 13A.
pp. 644-649.
Sukla, L.B. &
Misra, V.N. 2002. Mineral Biotechnology. Solar Energy Society of India (SESI). p. 30.
Truong, V.K., Lapovok,
R., Estrin, Y.S., Rundell, S. & Wang, J.Y. 2010. The influence
of nano-scale surface roughness on bacterial adhesion to ultrafine-grained
titanium. Biomaterials
31: 3674-3683.
Varjani, S.J. &
Upasani, V.N. 2017. Crude oil degradation by Pseudomonas aeruginosa
NCIM 5514: Influence of process parameters. Indian
Journal of Experimental Biology 55: 493-497.
Videla, H.A. &
Herrera, L.K. 2005. Microbiologically influenced corrosion: Looking
to the future. International
Microbiology 8(3): 169-180.
Wang, G., Spencer, J. & Elsayed, T. 2003. Estimation
of corrosion rates of structural members in oil tankers. Proceeding
of OMAE 2003. 22nd International Conference on Offshore Mechanics
and Arctic Engineering. pp. 1-6.
White, C. &
Gadd, G.M. 1996. Mixed sulphate-reducing bacterial cultures for
bioprecipitation of toxic metals: Factorial and response-surface
analysis of the effects of dilution rate, sulphate and substrate
concentration. Microbiology 142: 2197-2205.
Xu, J., Wang, K.,
Sun, C., Wang, F., Li, X., Yang, J. & Yu, C. 2011. The effect
of sulfate reducing bacteria on corrosion of carbon steel Q235 under
stimulated disbonded coating by using electrochemical impedance
spectroscopy. Corrosion Science 53: 1554-1562.
Xu, D. & Gu,
T. 2011. Bioenergetics explains when and why more severe MIC pitting
by SRB can occur. In NACE International: Corrosion 2011 Conference & Expo. pp. 1-21.
Zhang, C., Wen,
F. & Cao, Y. 2011. Progress in research of corrosion and protection
by sulfate reducing bacteria. Procedia
Environmental Science 10: 1177-1182.
*Corresponding
author; email: libriati@utm.my
|