Sains Malaysiana 49(4)(2020): 793-800

http://dx.doi.org/10.17576/jsm-2020-4904-08

 

Relationship between Volume of Leukoaraiosis Spot and Degree of Tissue Damage: A Quantitative Diffusion Tensor Imaging Study

(Hubungan antara Isi Padu Tompok Leukoaraiosis dengan Darjah Kerosakan Tisu: Satu Kajian Kuantitatif Pengimejan Tensor Difusi)

 

NUR HARTINI MOHD TAIB1*, WAN AHMAD KAMIL WAN ABDULLAH1, IBRAHIM LUTFI SHUAIB2, MUHAMMAD NUR SALIHIN YUSOFF3, ENRICO MAGOSSO2, SUZANA MAT ISA2 & AHMAD HADIF ZAIDIN SAMSUDIN1

 

1Department of Radiology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Darul Naim, Malaysia

 

2Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia

 

3Medical Radiation Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Darul Ehsan, Malaysia

 

Received: 13 February 2019/Accepted: 20 December 2019

 

ABSTRACT

Diffusion tensor imaging (DTI) offers parameter indices, namely, mean diffusivity (MD) and fractional anisotropy (FA). Leukoaraiosis is a brain white matter hyperintensity as observed on fluid-attenuated inversion recovery (FLAIR) images. In this study, we attempt to assess leukoaraiosis at its specific spot using a new parameter, namely, lesion-to-normal appearing white matter ratio (LNR). LNR was then used to investigate the relationship between the volume of leukoaraiosis spot and the degree of tissue damage. This study involved 49 leukoaraiosis subjects who altogether contributed to 274 leukoaraiosis spots. The MD, FA, and volume were measured at each spot. LNR was calculated by comparing the MD values of the spot with those of the surrounding normal-appearing white matter (NAWM). The correlation between MD, FA, and LNR with leukoaraiosis volume was then analysed. The leukoaraiosis tissues generally exhibited higher MD (103.97 ± 12.32 × 10-5 mm2/s) and lower FA (0.31 ± 0.08) values than the NAWM tissues (79.30 ± 4.76 × 10-5 mm2/s and 0.41 ± 0.09, respectively). LNR values were found to range from 0.04 to 1.63. The results showed an insignificant association between the leukoaraiosis volume and LNR [r = −.055, p = .368], whereas a very weak association was shown with MD [r = −.196, p = .001] and FA [r = .268, p < .001]. The volume of the leukoaraiosis spot does not necessarily indicate the degree of tissue damage. By using LNR instead of MD, an accurate analysis was performed since the variability of MD for NAWM surrounding the lesion is taken into account.

 

Keywords: Brain imaging; diffusion tensor imaging; leukoaraiosis; neuroimaging; white matter

 

ABSTRAK

Pengimejan tensor difusi menawarkan indeks parameter seperti difusi min (MD) dan anisotropi pecahan (FA). Leukoaraiosis adalah hiperkeamatan jirim putih otak melalui pemerhatian pada imej pemulihan penyongsangan pelemahan cecair (FLAIR). Dalam kajian ini, kami cuba menilai leukoaraiosis pada tompok khususnya menggunakan parameter baru iaitu nisbah lesi-jirim putih yang kelihatan normal (LNR). LNR kemudiannya digunakan untuk mengkaji hubungan antara isi padu tompok leukoaraiosis dan tahap kerosakan tisu. Kajian ini melibatkan 49 subjek leukoaraiosis yang kesemuanya menyumbang kepada 274 tompok leukoaraiosis. MD, FA dan isi padu diukur di setiap tompok. LNR dihitung dengan membandingkan nilai-nilai MD bagi tompok tersebut dengan jirim putih yang kelihatan normal (NAWM) di sekitarnya. Hubungan antara MD, FA dan LNR dengan isi padu leukoaraiosis kemudiannya dianalisa. Tisu leukoaraiosis umumnya menunjukkan nilai-nilai MD yang lebih tinggi (103.97 ± 12.32 × 10-5 mm2/s) dan FA lebih rendah (0.31 ± 0.08) berbanding NAWM (masing-masing 79.30 ± 4.76 × 10-5 mm2/s dan 0.41 ± 0.09). Nilai LNR didapati dalam julat 0.04 hingga 1.63. Keputusan menunjukkan perkaitan yang tidak signifikan antara isi padu leukoaraiosis dan LNR [r = −.055, p = .368] manakala perkaitan yang sangat lemah dengan MD [r = −.196, p = .001] dan FA [r = .268, p < .001] telah ditunjukkan. Isi padu tompok leukoaraiosis tidak semestinya menunjukkan tahap kerosakan tisu. Dengan menggunakan LNR berbanding MD, analisis yang tepat telah dilakukan kerana kebolehubahan MD bagi NAWM yang mengelilingi lesi telah diambil kira.

 

Kata kunci: Jirim putih; leukoaraiosis; pengimejan neuro; pengimejan otak; pengimejan tensor difusi

 

REFERENCES

Chanraud, S., Zahr, N., Sullivan, E.V. & Pfefferbaum, A. 2010. MR diffusion tensor imaging: A window into white matter integrity of the working brain. Neuropsychol. Rev. 20(2): 209-225.

Ding, X.Q., Finsterbusch, J., Wittkugel, O., Saager, C., Geobell, E., Fitting, T., Ulrich, G., Zeumer, H. & Fiehler, J. 2007. Apparent diffusion coefficient, fractional anisotropy and T2 relaxation time measurement: Does the field strength matter? Clin. Neuroradiol. 17: 230-238.

Fazekas, F., Barkhof, F., Wahlund, L.O., Pantoni, L., Erkinjuntti, T., Scheltens, P. & Schmidt, R. 2002. CT and MRI rating of white matter lesions. Cerebrovasc. Dis. 13(2): 31-36.

Grueter, B.E. & Schulz, U.G. 2011. Age-related cerebral white matter disease (leukoaraiosis): A review. Postgrad. Med. J. 88(1036): 79-87.

Helenius, J., Soinne, L., Salonen, O., Kaste. & Tatlisumak, T. 2002a. Leukoaraiosis, ischemic stroke, and normal white matter on diffusion-weighted MRI. Stroke 33(1): 45-50.

Helenius, J., Soinne, L., Perkiö, J., Salonen, O., Kangasmäki, A., Kaste, M., Richard, A.D.C., Hannu, J.A. & Tatlisumak, T. 2002b. Diffusion-weighted MR imaging in normal human brains in various age groups. AJNR Am. J. Neuroradiol. 23(2): 194-199.

Hunsche, S., Moseley, M.E., Stoeter, P. & Hedehus, M. 2001. Diffusion-tensor MR imaging at 1.5 and 3.0 T: Initial observations. Radiology 221(2): 550-556.

Jones, D.K., Lythgoe, D., Horsfield, M.A., Simmons, A., Williams, S.C.R. & Markus, H.S. 1999. Characterization of white matter damage in ischemic leukoaraiosis with diffusion tensor MRI. Stroke 30(2): 393-397.

Löbel, U., Sedlacik, J., Güllmar, D., Kaiser, W.A., Reichenbach, J.R. & Mentzel, H.J. 2009. Diffusion tensor imaging: The normal evolution of ADC, RA, FA, and eigenvalues studied in multiple anatomical regions of the brain. Neuroradiology 51(4): 253-263.

Maniega, S.M., Hernández, M.C.V., Clayden, J.D., Royle, N.A., Murray, C., Morris, Z., Aribisala, B.S., Gow, A.J., Starr, J.M., Bastin, M.E., Deary, I.J. & Wardlaw, J.M. 2015. White matter hyperintensities and normal-appearing white matter integrity in the aging brain. Neurobiol. Aging 36(2): 909-918.

Marner, L., Nyengaard, J.R., Tang, Y. & Pakkenberg, B. 2003. Marked loss of myelinated nerve fibers in the human brain with age. J. Comp. Neurol. 462(2): 144-152.

Mohd Taib, N.H., Wan Abdullah, A.K., Shuaib, I.L., Magosso, E. & Mat Isa, S. 2017. Determination of optimum combination of voxel size and b-value for brain diffusion tensor imaging. Sains Malaysiana 46(1): 67-74.

Mohd Taib, N.H., Wan Abdullah, A.K., Shuaib, I.L., Magosso, E. & Mat Isa, S. 2015. Diffusion tensor imaging of leukoaraiosis, normal appearing brain tissue, and normal brain tissue. Malaysian Journal of Medicine and Health Sciences 11(1): 1-10.

O'Sullivan, M. 2008. Leukoaraiosis. Prac. Neurol. 8(1): 26-38.

Oouchi, H., Yamada, K., Sakai, K., Kizu, O., Kubota, T., Ito, H. & Nishimura, T. 2007. Diffusion anisotropy measurement of brain white matter is affected by voxel size: Underestimation occurs in areas with crossing fibers. AJNR Am. J. Neuroradiol. 28(6): 1102-1106.

Pantoni, L., Simoni, M., Pracucci, G., Schmidt, R., Barkhof, F. & Inzitari, D. 2002. Visual rating scales for age-related white matter changes (Leukoaraiosis). Stroke 33(12): 2827-2833.

Ropele, S., Seewann, A., Gouw, A.A., van der Flier, W.M., Schmidt, R., Pantoni, L., Inzitari, D., Erkinjuntti, T., Scheltens, P., Wahlund, L.O., Waldemar, G., Chabriat, H., Ferro, J., Hennerici, M., O'Brien, J., Wallin, A. & Langhorne, P. 2009. Quantitation of brain tissue changes associated with white matter hyperintensities by diffusion-weighted and magnetization transfer imaging: The LADIS (leukoaraiosis and disability in the elderly) study. J. Magn. Reson. Imaging 29(2): 268-274.

Rosset, A., Spadola, L. & Ratib, O. 2004. OsiriX: An open-source software for navigating in multidimensional DICOM images. J. Dig. Imaging 17(3): 205-216.

Rossi, M., Jason, E., Marchesotti, S., Dastidar, P., Ollikainen, J. & Soimakallio, S. 2010. Diffusion tensor imaging correlates with lesion volume in cerebral hemisphere infarctions. BMC Med. Imaging 10(1): 1-11.

Rowe, B.K., Arndt, S., Magnotta, V.A., Nopoulos, P., Paradiso, S., Matsui, J.T., Johnson, H.J. & Mosera, D.J. 2013. Characterizing white matter health and organization in atherosclerotic vascular disease: A diffusion tensor imaging study. Psychiat. Res. 214(3): 389-394.

Silbert, L.C., Nelson, C., Howieson, D.B., Moore, M.M. & Kaye, J.A. 2008. Impact of white matter hyperintensity volume progression on rate of cognitive and motor decline. Neurology 71(2): 108-113.

Wright, C.B., Festa, J.R., Paik, M.C., Schmiedigen, A., Brown, T.R., Yoshita, M., DeCarli, C., Sacco, R. & Stern, Y. 2008. White matter hyperintensities and subclinical infarction: Associations with psychomotor speed and cognitive flexibility. Stroke 39(3): 800-805.

 

*Corresponding author; email: nhartini@usm.my

   

 

 

 

 

previous