Sains Malaysiana 49(4)(2020): 793-800
http://dx.doi.org/10.17576/jsm-2020-4904-08
Relationship between Volume of Leukoaraiosis Spot and Degree of Tissue Damage: A Quantitative
Diffusion Tensor Imaging Study
(Hubungan antara Isi Padu Tompok Leukoaraiosis dengan Darjah Kerosakan Tisu: Satu Kajian Kuantitatif
Pengimejan Tensor Difusi)
NUR HARTINI MOHD TAIB1*,
WAN AHMAD KAMIL WAN ABDULLAH1, IBRAHIM LUTFI SHUAIB2,
MUHAMMAD NUR SALIHIN YUSOFF3, ENRICO MAGOSSO2, SUZANA MAT
ISA2 & AHMAD HADIF ZAIDIN SAMSUDIN1
1Department of Radiology, School of Medical Sciences,
Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Darul Naim,
Malaysia
2Advanced Medical and Dental Institute, Universiti
Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
3Medical Radiation Programme, School of Health
Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Darul Ehsan,
Malaysia
Received: 13 February 2019/Accepted: 20 December 2019
ABSTRACT
Diffusion tensor imaging (DTI) offers parameter
indices, namely, mean diffusivity (MD) and fractional anisotropy (FA).
Leukoaraiosis is a brain white matter hyperintensity as observed on
fluid-attenuated inversion recovery (FLAIR) images. In this study, we attempt to assess leukoaraiosis at its specific spot
using a new parameter, namely,
lesion-to-normal appearing white matter ratio (LNR). LNR was then used to
investigate the relationship between the volume of leukoaraiosis spot and
the degree of tissue damage. This study involved 49 leukoaraiosis subjects who altogether contributed to 274 leukoaraiosis spots. The MD,
FA, and volume were measured at each spot. LNR was calculated by comparing
the MD values of the spot with those of the surrounding normal-appearing white
matter (NAWM). The correlation between
MD, FA, and LNR with leukoaraiosis volume was then
analysed. The leukoaraiosis tissues generally exhibited higher MD (103.97 ± 12.32 × 10-5 mm2/s) and lower FA (0.31 ± 0.08) values than the NAWM tissues (79.30 ± 4.76 × 10-5 mm2/s and 0.41 ± 0.09, respectively). LNR values were found to range from 0.04 to 1.63. The
results showed an insignificant association between the leukoaraiosis volume
and LNR [r =
−.055, p = .368], whereas a very weak association was shown with
MD [r =
−.196, p = .001] and FA [r = .268, p < .001]. The volume of the
leukoaraiosis spot does not necessarily indicate the degree of tissue damage.
By using LNR instead of MD, an accurate analysis was performed since the
variability of MD for NAWM surrounding the lesion is taken into account.
Keywords: Brain
imaging; diffusion tensor imaging; leukoaraiosis; neuroimaging; white matter
ABSTRAK
Pengimejan
tensor difusi menawarkan indeks parameter
seperti difusi min (MD) dan anisotropi pecahan (FA). Leukoaraiosis adalah hiperkeamatan jirim putih otak melalui pemerhatian pada imej pemulihan penyongsangan
pelemahan cecair (FLAIR). Dalam kajian ini,
kami cuba menilai leukoaraiosis pada tompok khususnya menggunakan
parameter baru iaitu nisbah lesi-jirim putih yang kelihatan normal (LNR). LNR kemudiannya digunakan untuk mengkaji hubungan antara isi padu
tompok leukoaraiosis dan tahap kerosakan tisu. Kajian
ini melibatkan 49 subjek leukoaraiosis yang kesemuanya menyumbang kepada 274
tompok leukoaraiosis. MD, FA dan
isi padu diukur di setiap tompok.
LNR dihitung dengan membandingkan
nilai-nilai MD bagi tompok tersebut dengan jirim putih yang kelihatan normal
(NAWM) di sekitarnya. Hubungan
antara MD, FA dan LNR dengan isi padu
leukoaraiosis kemudiannya dianalisa. Tisu
leukoaraiosis umumnya menunjukkan nilai-nilai MD yang lebih tinggi (103.97 ±
12.32 × 10-5 mm2/s) dan FA lebih rendah (0.31 ± 0.08)
berbanding NAWM (masing-masing 79.30 ± 4.76 × 10-5 mm2/s
dan 0.41 ± 0.09). Nilai LNR
didapati dalam julat 0.04 hingga 1.63. Keputusan
menunjukkan perkaitan yang tidak signifikan antara isi padu leukoaraiosis dan LNR [r = −.055, p =
.368] manakala perkaitan yang sangat lemah dengan MD [r = −.196, p =
.001] dan FA [r =
.268, p < .001] telah ditunjukkan. Isi padu
tompok leukoaraiosis tidak semestinya menunjukkan tahap kerosakan tisu. Dengan
menggunakan LNR berbanding MD, analisis yang tepat telah dilakukan kerana
kebolehubahan MD bagi NAWM yang mengelilingi lesi telah diambil kira.
Kata
kunci: Jirim putih; leukoaraiosis; pengimejan neuro; pengimejan otak; pengimejan tensor difusi
REFERENCES
Chanraud, S., Zahr, N.,
Sullivan, E.V. & Pfefferbaum, A. 2010. MR diffusion tensor imaging: A
window into white matter integrity of the working brain. Neuropsychol. Rev. 20(2): 209-225.
Ding, X.Q., Finsterbusch, J.,
Wittkugel, O., Saager, C., Geobell, E., Fitting, T., Ulrich, G., Zeumer, H.
& Fiehler, J. 2007. Apparent diffusion coefficient, fractional anisotropy
and T2 relaxation time measurement: Does the field strength matter? Clin. Neuroradiol. 17: 230-238.
Fazekas, F., Barkhof, F.,
Wahlund, L.O., Pantoni, L., Erkinjuntti, T., Scheltens, P. & Schmidt, R.
2002. CT and MRI rating of white matter lesions. Cerebrovasc. Dis. 13(2): 31-36.
Grueter, B.E. & Schulz,
U.G. 2011. Age-related cerebral white matter disease (leukoaraiosis): A review. Postgrad. Med. J. 88(1036): 79-87.
Helenius, J., Soinne, L.,
Salonen, O., Kaste. & Tatlisumak, T. 2002a. Leukoaraiosis, ischemic stroke,
and normal white matter on diffusion-weighted MRI. Stroke 33(1): 45-50.
Helenius, J., Soinne, L.,
Perkiö, J., Salonen, O., Kangasmäki, A., Kaste, M., Richard, A.D.C., Hannu,
J.A. & Tatlisumak, T. 2002b. Diffusion-weighted MR imaging in normal human
brains in various age groups. AJNR Am. J.
Neuroradiol. 23(2): 194-199.
Hunsche, S., Moseley, M.E.,
Stoeter, P. & Hedehus, M. 2001. Diffusion-tensor MR imaging at 1.5 and 3.0
T: Initial observations. Radiology 221(2): 550-556.
Jones, D.K., Lythgoe, D.,
Horsfield, M.A., Simmons, A., Williams, S.C.R. & Markus, H.S. 1999.
Characterization of white matter damage in ischemic leukoaraiosis with
diffusion tensor MRI. Stroke 30(2):
393-397.
Löbel, U., Sedlacik, J.,
Güllmar, D., Kaiser, W.A., Reichenbach, J.R. & Mentzel, H.J. 2009.
Diffusion tensor imaging: The normal evolution of ADC, RA, FA, and eigenvalues
studied in multiple anatomical regions of the brain. Neuroradiology 51(4): 253-263.
Maniega, S.M., Hernández,
M.C.V., Clayden, J.D., Royle, N.A., Murray, C., Morris, Z., Aribisala, B.S.,
Gow, A.J., Starr, J.M., Bastin, M.E., Deary, I.J. & Wardlaw, J.M. 2015.
White matter hyperintensities and normal-appearing white matter integrity in
the aging brain. Neurobiol. Aging 36(2): 909-918.
Marner, L., Nyengaard, J.R.,
Tang, Y. & Pakkenberg, B. 2003. Marked loss of myelinated nerve fibers in
the human brain with age. J. Comp.
Neurol. 462(2): 144-152.
Mohd Taib, N.H., Wan Abdullah,
A.K., Shuaib, I.L., Magosso, E. & Mat Isa, S. 2017. Determination of
optimum combination of voxel size and b-value for brain diffusion tensor
imaging. Sains Malaysiana 46(1):
67-74.
Mohd Taib, N.H., Wan Abdullah,
A.K., Shuaib, I.L., Magosso, E. & Mat Isa, S. 2015. Diffusion tensor
imaging of leukoaraiosis, normal appearing brain tissue, and normal brain
tissue. Malaysian Journal of Medicine and
Health Sciences 11(1): 1-10.
O'Sullivan, M. 2008.
Leukoaraiosis. Prac. Neurol. 8(1):
26-38.
Oouchi, H., Yamada, K., Sakai,
K., Kizu, O., Kubota, T., Ito, H. & Nishimura, T. 2007. Diffusion
anisotropy measurement of brain white matter is affected by voxel size:
Underestimation occurs in areas with crossing fibers. AJNR Am. J. Neuroradiol. 28(6): 1102-1106.
Pantoni, L., Simoni, M., Pracucci,
G., Schmidt, R., Barkhof, F. & Inzitari, D. 2002. Visual rating scales for
age-related white matter changes (Leukoaraiosis). Stroke 33(12): 2827-2833.
Ropele, S., Seewann, A., Gouw,
A.A., van der Flier, W.M., Schmidt, R., Pantoni, L., Inzitari, D., Erkinjuntti,
T., Scheltens, P., Wahlund, L.O., Waldemar, G., Chabriat, H., Ferro, J.,
Hennerici, M., O'Brien, J., Wallin, A. & Langhorne, P. 2009. Quantitation
of brain tissue changes associated with white matter hyperintensities by
diffusion-weighted and magnetization transfer imaging: The LADIS (leukoaraiosis
and disability in the elderly) study. J.
Magn. Reson. Imaging 29(2): 268-274.
Rosset, A., Spadola, L. &
Ratib, O. 2004. OsiriX: An open-source software for navigating in
multidimensional DICOM images. J. Dig.
Imaging 17(3): 205-216.
Rossi, M., Jason, E.,
Marchesotti, S., Dastidar, P., Ollikainen, J. & Soimakallio, S. 2010.
Diffusion tensor imaging correlates with lesion volume in cerebral hemisphere
infarctions. BMC Med. Imaging 10(1):
1-11.
Rowe, B.K., Arndt, S.,
Magnotta, V.A., Nopoulos, P., Paradiso, S., Matsui, J.T., Johnson, H.J. &
Mosera, D.J. 2013. Characterizing white matter health and organization in
atherosclerotic vascular disease: A diffusion tensor imaging study. Psychiat. Res. 214(3): 389-394.
Silbert, L.C., Nelson, C.,
Howieson, D.B., Moore, M.M. & Kaye, J.A. 2008. Impact of white matter
hyperintensity volume progression on rate of cognitive and motor decline. Neurology 71(2): 108-113.
Wright, C.B., Festa, J.R.,
Paik, M.C., Schmiedigen, A., Brown, T.R., Yoshita, M., DeCarli, C., Sacco, R.
& Stern, Y. 2008. White matter hyperintensities and subclinical infarction:
Associations with psychomotor speed and cognitive flexibility. Stroke 39(3): 800-805.
*Corresponding
author; email: nhartini@usm.my
|