Sains Malaysiana 49(4)(2020): 847-858
http://dx.doi.org/10.17576/jsm-2020-4904-14
Magnetite Nanoparticles
(MNPs) Used as Cadmium Metal Removal from the Aqueous Solution from Mill Scales
Waste Sources
(Penggunaan Nanozarah Magnetit (MNPs) sebagai Penyingkiran Logam Kadmium daripada Larutan Akua daripada Sumber Sisa Sisik Besi)
NUR
ASYIKIN AHMAD NAZRI1,3, RABA'AH
SYAHIDAH AZIS1,2*, MUHAMMAD SYAZWAN MUSTAFFA2, ABDUL HALIM SHAARI2,
ISMAYADI ISMAIL1, HASFALINA CHE MAN4, NORLAILY
MOHD SAIDEN1,2 & NOR HAPISHAH ABDULLAH5
1Material Synthesis and Characterization Laboratory (MSCL), Institute
of Advanced Technology (ITMA), Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
2Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
3Center of Foundation Studies, Cawangan Selangor, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
4Department of Biological and Agricultural Engineering, Faculty of
Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
5Functional Device Laboratory (FDL), Institute of Advanced Technology
(ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
Received: 23 July 2019/Accepted: 5 January 2020
ABSTRACT
This
research carrying out in producing a high percentage of magnetite nanoparticle
(MNP) from the waste of industrial mill scales for Cadmium ions removal. The
extraction of the magnetite from mill scales waste involved two steps
separation technique process known as the Magnetic Separation Technique (MST)
followed by Curie Temperature Separation Technique (CTST). The extraction
samples were milled using the high energy ball mill
(HEBM) at various milling time of 4, 8, 12, 16, and 20 h. The
formation of nanosized single-phase hexagonal spinel has been observed as early in 4 h milling time by using XRD
analysis. Prolonged the milling time had derived different characteristics of
the MNP. The samples then used as an adsorbent in cadmium removal of the
aqueous solution. The highest adsorption capacity, qe was contributed by MNP with an 8 h milling time. This
is due to the surface area and the porosity of the samples based on BET reports
and HR TEM images. Newly extracted MNP from waste mill scales is cost effective
and eco-friendly process that potential in wastewater treatment.
Keywords: Adsorbent; adsorption; Cadmium (Cd); heavy metals; magnetite (Fe3O4)
nanoparticles; waste mill scale;
wastewater treatment
ABSTRAK
Penyelidikan ini dijalankan dalam usaha menghasilkan peratusan nanozarah magnetit (MNP) yang tinggi daripada sumber sisa sisik besi untuk penyingkiran ion Kadmium. Pengekstrakan
magnetit daripada sisa sisik besi melibatkan proses teknik pemisahan dua langkah
yang dikenali sebagai Teknik Pemisahan Magnetik (MST) diikuti oleh Teknik
Pemisahan Suhu Curie (CTST). Sampel pengekstrakan dikisar menggunakan pengisar bola tenaga tinggi (HEBM) pada pelbagai waktu pengisaran 4, 8, 12, 16 dan 20 jam. Pembentukan spinel
heksagon fasa tunggal saiz nano telah diperhatikan seawal masa pengisaran 4 jam dengan menggunakan analisis XRD. Masa pengisaran yang berpanjangan telah menghasilkan ciri MNP yang berbeza. Sampel kemudian digunakan sebagai penyerap dalam penyingkiran kadmium dalam larutan akua. Kapasiti penjerapan tertinggi, qe disumbangkan oleh
MNP dengan masa pengisaran 8 jam. Ini disebabkan oleh luas permukaan dan
keliangan sampel berdasarkan laporan BET dan imej HR TEM. MNP yang baru diekstrak daripada sisa sisik besi adalah proses yang menjimatkan dan mesra alam yang berpotensi dalam rawatan air
sisa.
Kata kunci: Kadmium (Cd); logam berat; nanozarah magnetit (Fe3O4); penjerap; penjerapan; sisa sisik besi;
rawatan air sisa
REFERENCES
Andrade, Â.L., Souza, D.M.,
Pereira, M.C., Fabris, J.D. & Domingues,
R.Z. 2010. pH effect on the synthesis of magnetite
nanoparticles by the chemical reduction-precipitation method. Quimica Nova 33(3): 524-527.
Azis, R.S., Syazwan, M.M., Shahrani,
N.M.M., Hapishah, A.N., Nazlan,
R., Idris, F.M., Ismail, I., Zulkimi, M.M.M.,
Ibrahim, I.R., Abbas, Z. & Saiden, N.M. 2018.
Influence of sintering temperature on the structural, electrical and microwave
properties of yttrium iron garnet (YIG). Journal
of Materials Science Materials in Electronics 29: 8390-8401.
Azis, R.S., Hashim, M., Yahya,
N. & Saiden, N.M. 2002a. A study of sintering
temperatures variation on microstructure developments of strontium hexaferrite millscale-derived. Journal of Applied Sciences 2(12):
1092-1095.
Azis, R.S., Hashim, M. & Yahya, N. 2002b. Purified iron oxide a-Fe2O3 from millscale using curie temperature separation technique. Journal of Solid State Science and
Technology 9: 87-90.
Blaney, L. 2007.
Magnetite (Fe3O4): Properties, synthesis, and
applications. Lehigh Review 15:
33-81.
Bruce, I.J., Taylor, J., Todd,
M., Davies, M.J., Borioni, E., Sangregorio,
C. & Sen, T. 2004. Synthesis, characterisation and application of silica-magnetite nanocomposites. Journal of
Magnetism and Magnetic Materials 284: 145-160.
Daud, N., Azis, R.S., Hashim,
M., Matori, K.A., Hassan, J., Saiden, N.M. & Shahrani,
N.M.M. 2015. Preparation and characterization of Sr1−xNdxFe12O19 derived from steelwaste product via mechanical alloying. Materials
Science Forum 846: 403-409.
Egerton,
R.F. 2005. Physical Principles of Electron Microscopy. New York:
Springer.
Ghasemi, E., Heydari, A. & Sillanpää, M.
2017. Superparamagnetic Fe3O4@ EDTA nanoparticles as an
efficient adsorbent for simultaneous removal of Ag(I), Hg(II), Mn(II), Zn(II), Pb(II) and Cd(II)
from water and soil environmental samples. Microchemical Journal 131: 51-56.
Hah, H.Y. 2016. Magnetism of magnetite nanoparticles as determined by Mössbauer spectroscopy. Master’s Thesis. University of Tennessee (Unpublished).
Kumar, R., Sakthivel,
R., Behura, R., Mishra, B.K. & Das, D. 2015.
Synthesis of magnetite nanoparticles from mineral waste. Journal of
Alloys and Compounds 645:
398-404.
Liu,
X.Q., Guan, Y.P., Chen, H.H., Liu, H.Z. & Axel, J.R. 2006. Preparation and
characterization of hydrophobic superparamagnetic magnetite gel. Journal of
Magnetism and Magnetic Materials 306: 248-253.
Li, J., Jiang, B., Liu, Y., Qiu, C., Hu, J., Qian, G., Guo,
W. & Ngo, H.H. 2017. Preparation and adsorption properties of magnetic
chitosan composite adsorbent for Cu2+ removal. Journal of
Cleaner Production 158:
51-58.
Mohan, D. & Pittman, Jr. C.U. 2007. Arsenic
removal from water/wastewater using adsorbents-A critical review. Journal
of Hazardous Materials 142(1-2):
1-53.
Monier, M., Ayad, D.M., Wei, Y. & Sarhan,
A.A. 2010. Adsorption of Cu(II), Co(II), and Ni(II)
ions by modified magnetic chitosan chelating resin. Journal of
Hazardous Materials 177(1-3):
962-970.
Muda, N.N.C., Azis, R.S., Shaari,
A.H., Hassan, J. & Sulaiman, S. 2016. Elemental
analysis and IR band characteristics of a-Fe2O3 and BaFe12O19 steel waste product based. Solid State
Science and Technology 24(2): 45-51.
Parkinson, G.S. 2016. Iron
oxide surfaces. Surface Science Reports 71(1): 272-365.
Rajput, S., Pittman, Jr. C.U. & Mohan,
D. 2016. Magnetic magnetite (Fe3O4) nanoparticle
synthesis and applications for lead (Pb2+) and chromium (Cr6+)
removal from water. Journal of Colloid and Interface Science 468: 334-346.
Schwertmann, U. & Cornell,
R.M. 2008. Iron
Oxides in the Laboratory: Preparation and Characterization. 2nded. Weinheim, Germany: Wiley-VCH Verlag.
Shahid, M.K., Phearom, S. & Choi, Y.G. 2018. Synthesis of magnetite
from raw mill scale and its application for arsenate adsorption from
contaminated water. Chemosphere 203: 90-95.
Sodipo, B.K. & Aziz,
A.A. 2016. Recent advances in synthesis and surface modification of
superparamagnetic iron oxide nanoparticles with silica. Journal of Magnetism
and Magnetic Materials 416:
275-291.
Suryanarayana, C. 2001. Mechanical alloying and milling. Progress in Material Science 46(12): 1-184.
Suryanarayana, C., Chen, G.H. & Samfroes, F.H. 1992. Milling maps for phase identification
during mechanical alloying. Scripta Metallurgica et Materialia 26:
1727-1732.
Tan, P., Sun, J., Hu, Y.,
Fang, Z., Bi, Q., Chen, Y. & Cheng, J. 2015. Adsorption of Cu2+,
Cd2+ and Ni2+ from aqueous single metal solutions on
graphene oxide membranes. Journal of Hazardous Materials 297: 251-260.
*Corresponding author; email: rabaah@upm.edu.my
|