Sains Malaysiana 49(6)(2020): 1389-1400
http://dx.doi.org/10.17576/jsm-2020-4906-17
Enhancing Effect
of Vitexin on Osteogenic Activity of Murine
Pre-Osteoblastic MC3T3-E1 Cells
(Kesan Peningkatan Viteksin terhadap Aktiviti Osteogenik Sel MC3T3-E1 Pra-Osteoblastik Murin)
XIAOHAN
YUAN1, HAIYAN HAN2, ZHAOHUI LUO3, QIUXUE WANG2,
PEIJIA TANG2, ZHIHUI ZHANG2, YUJIE FU2 &
CHENGBO GU1,2*
1Key
Laboratory of Agricultural Microbiology of Heilongjiang Provincial Science and
Technology Department, Northeast Agricultural University, Harbin, 150030, China
2Key
Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry
University, Harbin, 150040, China
3Fankou
Lead-Zinc Mine Staff Hospital, Shenzhen Zhongjin Lingnan Nonfemet Company Limited, Renhua, 512325, China
Received:
17 September 2019/Accepted: 14
February 2020
ABSTRACT
Vitexin (5,7,4-trihydroxyflavone-8-glucoside), a natural
flavone present in a variety of plants, is well known for its rich
pharmacological properties. However, its osteogenic activity remains unclear to
date. The purpose of this study was to explore the effects of vitexin on osteogenic activity in murine pre-osteoblastic
MC3T3-E1 cells using the MTT assay for cell proliferation, alkaline phosphatase
(ALP) activity assay for cell differentiation, and Von Kossa staining for cell mineralization. Quantitative real-time PCR was
used for the detection of osteocalcin (OCN)
mRNA expression in cells. Furthermore, effects of vitexin on the differentiation and matrix mineralization of dexamethasone
(DEX)-suppressed cells was also investigated. The
results showed vitexin could significantly enhance
cell proliferation in a low concentration range of 10-10-10-6 μg mL-1. ALP activity was
significantly increased after the cells were treated with vitexin at 10-8 and 10-6 μg mL-1. The expression levels of the osteogenic OCN gene in cells treated with vitexin at 10-6, 10-8, and 10-10 μg mL-1 were improved by 3.1-fold, 5.8-fold, and 4.2-fold
over the control, respectively. Additionally, vitexin (10-8 μg mL-1) significantly alleviated the
inhibitory effect of osteoblast differentiation and mineralization induced by
DEX. Collectively, our findings suggest vitexin could
enhance cell proliferation and osteogenic differentiation of MC3T3-E1 cells, as
well as rescue the inhibitory effect of cell differentiation and matrix
mineralization induced by DEX. Therefore, vitexin may
be useful as a promising therapeutic agent for bone disease and plays an
important role in the prevention of glucocorticoid-induced osteoporosis.
Keywords:
Anti-osteoporosis; dexamethasone; MC3T3-E1 cells; osteogenic activity; vitexin
ABSTRAK
Viteksin (5,7,4-trihidroksiflavon-8-glucosida), merupakan flavon semula jadi yang terdapat dalam pelbagai jenis tumbuhan juga terkenal dengan khasiat farmakologinya yang tinggi. Walau bagaimanapun, aktiviti osteogeniknya masih belum jelas sehingga kini. Tujuan kajian ini adalah untuk mengkaji kesan viteksin terhadap aktiviti osteogenik pada sel MC3T3-E1 pra-osteoblas murin menggunakan asai MTT untuk proliferasi sel, asai aktiviti alkali fosfatase (ALP) untuk pembezaan sel dan pewarnaan Von Kossa untuk mineralisasi sel. PCR masa nyata kuantitatif digunakan untuk mengesan ekspresi mRNA osteokalsin (OCN) dalam sel. Selanjutnya, kesan viteksin terhadap pembezaan dan mineralisasi matriks deksametason (DEX) sel yang ditindas juga dikaji. Hasil kajian menunjukkan viteksin dapat meningkatkan proliferasi sel secara signifikan dalam julat kepekatan yang rendah iaitu 10-10-10-6 μg mL-1. Aktiviti ALP meningkat dengan ketara setelah sel dirawat dengan viteksin pada kepekatan 10-8 dan 10-6 μg mL-1. Tahap ekspresi gen OCN osteogenik dalam sel yang dirawat dengan viteksin pada 10-6, 10-8 dan 10-10 μg mL-1 masing-masing meningkat sebanyak 3.1, 5.8 dan 4.2 kali ganda daripada kawalan. Selain itu, viteksin dengan kepekatan 10-8 μg mL-1 juga didapati meningkatkan kesan perencatan pembezaan osteoblas dan mineralisasi yang diaruh oleh DEX. Secara kolektifnya, hasil kajian ini menunjukkan bahawa viteksin dapat meningkatkan proliferasi sel dan pembezaan osteogenik sel MC3T3-E1, serta melindungi daripada kesan perencatan pembezaan osteoblas dan mineralisasi yang diaruh oleh DEX. Oleh itu, viteksin berpotensi digunakan sebagai agen terapi yang baik bagi merawat penyakit tulang dan memainkan peranan penting dalam pencegahan osteoporosis
yang disebabkan oleh glukokortikoid.
Kata kunci: Aktiviti osteogenik; anti-osteoporosis; deksametason; sel MC3T3-E1; viteksin
REFERENCES
Adami, G. & Saag, K.G. 2019.
Glucocorticoid-induced osteoporosis update. Current
Opinion in Rheumatology 31(4): 388-393.
Adler, R.A. 2019. Glucocorticoid-induced osteoporosis:
Management challenges in older patients. Journal of Clinical Densitometry 22(1): 20-24.
Arriero Mdel, M., Ramis, J.M., Perello, J. & Monjo,
M. 2012. Differential response of MC3T3-E1 and human mesenchymal stem cells to
inositol hexakisphosphate. Cellular
Physiology and Biochemistry 30: 974-986.
Balasubramanian,
A., Wade, S.W., Adler, R.A., Saag, K., Pannacciulli, N. & Curtis, J.R.
2018. Glucocorticoid exposure and fracture risk in a cohort of US patients with
selected conditions. Journal of Bone and
Mineral Research 33: 1881-1888.
Bolognese,
M.A. 2010. SERMs
and SERMs with estrogen for postmenopausal osteoporosis. Reviews in
Endocrine and Metabolic Disorders 11(4): 253-259.
Canalis, E. 2003. Mechanisms of
glucocorticoid-induced osteoporosis. Current
Opinion in Rheumatology 15(4): 454-457.
Canalis, E.
& Delany, A.M. 2002. Mechanisms of glucocorticoid action in bone. Annals of the New York Academy of Sciences 966: 73-81.
Caplan, A.,
Fett, N., Rosenbach, M., Werth, V.P. & Micheletti, R.G. 2017. Prevention
and management of glucocorticoid-induced side effects: A comprehensive review: Ocular,
cardiovascular, muscular, and psychiatric side effects and issues unique to
pediatric patients. Journal of the
American Academy of Dermatology 76: 201-207.
Chang, E.J.,
Lee, W.J., Cho, S.H. & Choi, S.W. 2003. Proliferative effects of
flavan-3-ols and propelargonidins from rhizomes of Drynaria fortunei on
MCF-7 and osteoblastic cells. Archives of
Pharmacal Research 26: 620-630.
Che, C.T.,
Wong, M.S. & Lam, C.W. 2016. Natural products from Chinese medicines with
potential benefits to bone health. Molecules 21(3): 239.
Chen, J.S.
& Sambrook, P.N. 2012. Antiresorptive therapies for osteoporosis: A clinical overview. Nature Reviews Endocrinology 8: 81-91.
Chen, L.R., Wen, Y.T., Kuo, C.L. & Chen, K.H. 2014. Calcium and
vitamin D supplementation on bone health: Current evidence and
recommendations. International Journal of Gerontology 8(4):
183-188.
Dong, L.Y.,
Fan, Y.F., Shao, X. & Chen, Z.W. 2011. Vitexin protects against myocardial
ischemia/reperfusion injury in Langendorff-perfused rat hearts by attenuating
inflammatory response and apoptosis. Food
and Chemical Toxicology 49: 3211-3216.
Feng, Y.L.
& Tang, X.L. 2014. Effect of glucocorticoid-induced oxidative stress on the
expression of Cbfa1. Chemico-Biological
Interactions 207: 26-31.
Fu, Y., Zu,
Y., Liu, W., Hou, C., Chen, L., Li, S., Shi, X. & Tong, M. 2007.
Preparative separation of vitexin and isovitexin from pigeonpea extracts with
macroporous resins. Journal of
Chromatography A 1139: 206-213.
Gu, C.B., Liu, Z.Z., Yuan, X.H., Li, W.,
Zu, Y.Z. & Fu, Y.Y. 2017. Preparation of vitexin nanoparticles by combining
the antisolvent precipitation and high pressure homogenization approaches
followed by lyophilization for dissolution rate enhancement. Molecules 22(12): 2038.
Guanabens,
N., Gifre, L. & Peris, P. 2014. The role of Wnt signaling and sclerostin
in the pathogenesis of glucocorticoid-induced osteoporosis. Current Osteoporosis Reports 12: 90-97.
Guo,
A.J., Choi, R.C., Cheung, A.W., Chen, V.P., Xu, S.L., Dong, T.T., Chen, J.J.
& Tsim, K.W. 2011. Baicalin, a flavone, induces the differentiation of
cultured osteoblasts: An action via the Wnt/beta-catenin
signaling pathway. Journal of Biological
Chemistry 286(32): 27882-27893.
Hadji, P. 2012. The evolution of selective estrogen
receptor modulators in osteoporosis therapy. Climacteric 15(6): 513-523.
He, M., Min,
J.W., Kong, W.L., He, X.H., Li, J.X. & Peng, B.W. 2016. A review on the
pharmacological effects of vitexin and isovitexin. Fitoterapia 115: 74-85.
Hessle, L.,
Johnson, K.A., Anderson, H.C., Narisawa, S., Sali, A., Goding, J.W.,
Terkeltaub, R. & Millan, J.L. 2002. Tissue-nonspecific alkaline phosphatase
and plasma cell membrane glycoprotein-1 are central antagonistic regulators of
bone mineralization. Proceedings of the
National Academy of Sciences of the United States of America 99: 9445-9449.
Kim, J.H.,
Lee, B.C., Kim, J.H., Sim, G.S., Lee, D.H., Lee, K.E., Yun, Y.P. & Pyo,
H.B. 2005. The isolation and antioxidative effects of vitexin from Acer
palmatum. Archives of Pharmacal
Research 28(2): 195-202.
Komori,
T. 2016. Glucocorticoid signaling and bone biology. Hormone and Metabolic Research 48(11): 755-763.
Kulak Júnior J., Kulak, C.A. & Taylor, H.S. 2010. SERMs in the prevention and treatment of postmenopausal
osteoporosis: An update. Arquivos Brasileiros de Endocrinologia & Metabologia 54(2): 200-205.
Lee, N.K.,
Choi, Y.G., Baik, J.Y., Han, S.Y., Jeong, D.W., Bae, Y.S., Kim, N. & Lee,
S.Y. 2005. A crucial role for reactive oxygen species in RANKL-induced
osteoclast differentiation. Blood 106: 852-859.
Lin, Z.,
Jiang, Z.L., Chen, L.H., Sun, Y., Chen, S.Z., Zhou, P., Xia, A.X., Jin, H.,
Zhu, Y.W. & Chen, D.Y. 2017. Glucocorticoid-induced leucine zipper may play
an important role in icariin by suppressing osteogenesis inhibition induced by
glucocorticoids in osteoblasts. Biomedicine & Pharmacotherapy 90: 237-243.
Luo, S.,
Yang, Y., Chen, J., Zhong, Z., Huang, H., Zhang, J. & Cui, L. 2016.
Tanshinol stimulates bone formation and attenuates dexamethasone-induced
inhibition of osteogenesis in larval zebrafish. Journal of Orthopaedic Translation 4: 35-45.
Ma, X.Q.,
Zheng, C.J., Zhang, Y., Hu, C.L., Lin, B., Fu, X.Y., Han, L.Y., Xu, L.S.,
Rahman, K. & Qin, L.P. 2013. Antiosteoporotic flavonoids from Podocarpium: Podocarpum. Phytochemistry Letters 6: 118-122.
Marie, P.J.
& Kassem, M. 2011. Osteoblasts in osteoporosis: Past, emerging, and future anabolic
targets. European Journal of
Endocrinology 165: 1-10.
Miron, R.J.,
Caluseru, O.M., Guillemette, V., Zhang, Y., Gemperli, A.C., Chandad, F. &
Sculean, A. 2013. Influence of enamel matrix derivative on cells at different
maturation stages of differentiation. PloS ONE 8: e71008.
Nash,
L.A., Sullivan, P.J., Peters, S.J. & Ward, W.E. 2015. Rooibos flavonoids,
orientin and luteolin, stimulate mineralization in human osteoblasts through
the Wnt pathway. Molecular Nutrition
& Food Research 59(3): 443-453.
Niu, Y.B.,
Li, Y.H., Kong, X.H., Zhang, R., Sun, Y., Li, Q., Li, C., Liu, L., Wang, J.
& Mei, Q.B. 2012. The beneficial effect of Radix Dipsaci total saponins on
bone metabolism in vitro and in vivo and the possible mechanisms
of action. Osteoporosis International 23: 2649-2660.
Nix, A.,
Paull, C.A. & Colgrave, M. 2015. The flavonoid profile of pigeonpea, Cajanus
cajan: A review. Springerplus 4: 125.
Pereira, R.M., Carvalho, J.F., Paula, A.P., Zerbini, C., Domiciano, D.S., Goncalves, H., Danowski, J.S., Marques Neto, J.F., Mendonca, L.M., Bezerra, M.C., Terreri, M.T., Imamura, M., Weingrill, P., Plapler, P.G., Radominski, S., Tourinho, T., Szejnfeld, V.L. & Andrada, N.C. 2012. Guidelines
for the prevention and treatment of glucocorticoid-induced osteoporosis. Revista
Brasileira De Reumatologia 52(4): 580-593.
Ponnapakkam, T., Katikaneni, R., Sakon, J., Stratford,
R. & Gensure, R.C. 2014. Treating osteoporosis by targeting parathyroid
hormone to bone. Drug Discovery Today 19(3): 204-208.
Prabhakar,
M.C., Bano, H., Kumar, I., Shamsi, M.A. & Khan, M.S. 1981. Pharmacological
investigations on vitexin. Planta Medica 43: 396-403.
Wang, W.Z.,
Olson, D., Cheng, B., Guo, X. & Wang, K.Z. 2012. Sanguis Draconis resin
stimulates osteoblast alkaline phosphatase activity and mineralization in
MC3T3-E1 cells. Journal of
Ethnopharmacology 142(1): 168-174.
Weinstein,
R.S. 2011. Glucocorticoid-induced bone disease. New England Journal of Medicine 365: 62-70.
Wu, Z., Yan,
D., Xie, Z., Weng, S., Zhou, Q., Li, H., Bai, B., Boodhun, V., Shen, Z., Tang,
J. & Yang, L. 2018. Combined treatment with cinnamaldehyde and PTH enhances
the therapeutic effect on glucocorticoid-induced osteoporosis through
inhibiting osteoclastogenesis and promoting osteoblastogenesis. Biochemical and Biophysical Research
Communications 505: 945-950.
Yuan, J.,
Lin, J., Xu, C., Ye, Q., Xiong, Y., Huang, L. & Yuan, H. 2005. Experimental
research on prevention of glucocorticoid-induced avascular necrosis of the
femoral head with Tongluo Shenggu capsule. Traditional
Chinese Drug Research and Clinical Plarmacology 16: 185-188.
Zaheer, S., LeBoff, M. & Lewiecki, E.M. 2015. Denosumab for the treatment of osteoporosis. Expert Opinion on Drug Metabolism
& Toxicology 11(3): 461-470.
Zhang, J.,
Liu, C., Sun, J., Liu, D. & Wang, P. 2010. Effects of water extract of Cajanus
cajan leaves on the osteogenic and adipogenic differentiation of mouse
primary bone marrow stromal cells and the adipocytic trans-differentiation of
mouse primary osteoblasts. Pharmaceutical
Biology 48: 89-95.
Zhang, Y.J.,
Wang, D.M., Yang, L.N., Zhou, D. & Zhang, J.F. 2014. Purification and
characterization of flavonoids from the leaves of Zanthoxylum bungeanum and correlation between their structure and antioxidant activity. PloS ONE 9: e105725.
Zhou, C.H., Zhang, X. & Xu, D.H.
2014. Effect of vitexin on the osteogenic
differentiation of rat bone marrow mesenchymal stem cells. Chinese Journal of Modern Drug Application 31(4): 405-408.
*Corresponding author;
email: dilisatis@163.com
|