Sains Malaysiana 49(9)(2020): 2053-2063
http://dx.doi.org/10.17576/jsm-2020-4909-03
Short Term Gold-Mine Tailings Exposure Induced Growth and Photosynthesis
of Philippine Tung (Reutealis trisperma [Blanco])
(Pendedahan Amang Lombong Emas Jangka Pendek Teraruh Pertumbuhan dan Fotosintesis Philippine Tung (Reutealis trisperma [Blanco]))
HAMIM
HAMIM1*, DIBYO PRANOWO2, LULUK SETYANINGSIH3,
MUHAMMAD HILMI4 & DEDEN SAPRUDIN5
1Department
of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Jl. Agathis, Kampus IPB Darmaga, Bogor, Indonesia
2Research
Institute for Industrial and Refreshing Crops (Balittri),
Indonesian Agency for Agricultural, Research and Development, Ministry of Agriculture
of Republic of Indonesia, Pakuwon, Sukabumi, West Java, Indonesia
3Faculty
of Forestry, University of Nusa Bangsa, Bogor, Indonesia
4School
of Vocation, IPB University, Bogor, Indonesia
5Department
of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
Received: 15 January 2020/Accepted: 7 May 2020
Abstract
Philippine
Tung (Reutealis trisperma [Blanco] Airy Shaw) is one of non-edible oil
producing plant resistant to unfavorable conditions and therefore this plant
has prospective role to be used in phytoremediation program on gold post-mined
area. The experiment aimed to analyze photosynthesis and growth of R. trisperma plants in response to short term gold-mine
tailing treatment in polybag experiment. The experiment was carried out using
completely randomized design with two factors and 5 replications. The first
factor was five varieties of R. trisperma (M1,
M2, D1, D2 and HR) and the second factor was gold-mine tailings treatment
comprised 0, 25, 50, and 100% of tailings which was applied in combination with
mixed compost and soil 1:3 (v/v) as a basic media. Plant growth and
physiological characters were observed after 6 weeks of the treatment. The
result showed that even though malondialdehyde (MDA)
of R. trisperma leaves increased slightly, but
the plants treated with gold-mine tailing had higher photosynthetic rate than
that of the control (untreated) plants, which resulted in the improvement of
root and shoot growth up to 70 and 90%, respectively. Higher content of Ca, Mg,
Fe, Zn, and Mn in gold-mine tailing may have positive
effect to R. trisperma indicated by
photosynthesis and growth enhancement which suggests the plant tolerance to
gold-mine tailings.
Keywords:
Gold-mine tailing; heavy metal stress; photosynthesis; phytoremediation; Reutealis trisperma
Abstrak
Philippine
Tung (Reutealis trisperma [Blanco] Airy Shaw) adalah salah satu daripada tumbuhan hasilan minyak yang tidak dapat dimakan yang tahan terhadap keadaan yang kurang baik dan oleh itu tumbuhan ini mempunyai peranan yang akan digunakan dalam program fitopemulihan pada kawasan pasca lombong emas. Uji kaji ini bertujuan untuk menganalisis fotosintesis dan pertumbuhan tumbuhanR. trisperma sebagai tindak balas terhadap rawatan amang emas jangka pendek dalam percubaan polibeg. Uji kaji ini dijalankan menggunakan reka Acak Lengkap dengan dua faktor dan 5 ulangan. Faktor pertama adalah lima jenis R. trisperma (M1, M2, D1, D2 dan HR) dan faktor kedua adalah rawatan amang lombong emas terdiri daripada 0, 25, 50 dan 100% amang yang digunakan dalam gabungan dengan campuran kompos dan tanah 1: 3 (v/v) sebagai media asas. Pertumbuhan tumbuhan dan watak fisiologi diperhatikan selepas 6 minggu rawatan. Hasilnya menunjukkan bahawa walaupun kandungan malondialdehida (MDA) daun R. trisperma meningkat sedikit, namun tumbuh-tumbuhan yang dirawat dengan amang emas mempunyai kadar fotosintesis yang lebih tinggi daripada tanaman kawalan (tidak dirawat), yang mengakibatkan peningkatan akar dan pucuk pertumbuhan masing-masing sehingga 70 dan 90%. Kandungan Ca, Mg, Fe, Zn dan Mn yang lebih tinggi dalam amang lombong emas mungkin mempunyai kesan positif kepadaR. trisperma yang ditunjukkan oleh fotosintesis dan peningkatan pertumbuhan yang menunjukkan toleransi tumbuhanR. trisperma kepada amang lombong emas.
Kata kunci: Amang lombong emas; fitopemulihan; fotosintesis; Reutealis trisperm; tegasan logam berat
References
Ali,
H., Khan, E. & Sajad, M.A. 2013. Phytoremediation
of heavy metals - concepts and applications. Chemosphere 91(7): 869-881.
Allakhverdiev, S.I., Kreslavski, V.D., Klimov,
V.V., Los, D.A., Carpentier, R. & Mohanty, P. 2008. Heat stress: An overview of molecular
responses in photosynthesis. Photosynthesis Research 98(1-3): 541-550.
Apel, K. & Hirt, H. 2004. Reactive oxygen species: Metabolism,
oxidative stress, and signal transduction. Annual Review of Plant Biology 55: 373-399.
Arifin, Y.I., Sakakibara, M. & Sera, K. 2015. Impacts of artisanal
and small-scale gold mining (ASGM) on environment and human health of Gorontalo
Utara Regency, Gorontalo Province, Indonesia. Geosciences 5(2): 160-176.
ATSDR
2003. Agency for Toxic Substances and Disease Registry. U.S.
Department of Health & Human Services. Accessed on 10 November 2018.
Beale,
S.I. 1999. Enzymes of chlorophyll biosynthesis. Photosynthesis Research 60(1): 43-73.
Cakmak, I. & Yazici, A.M. 2010. Magnesium: A forgotten element in crop production. Better Crops 94(2): 23-25.
Chaffai, R. & Koyama,
H. 2011. Heavy metal tolerance in Arabidopsis thaliana. Advances in
Botanical Research 60: 1-49.
Choppala, G., Saifullah, Bolan, N., Bibi, S., Iqbal, M., Rengel, Z., Kunhikrishnan, A., Ashwath, N. & Ok, Y.S. 2014. Cellular mechanisms in
higher plants governing tolerance to cadmium toxicity. Critical Reviews in
Plant Sciences 33(5): 374-391.
Dong,
Q., Hu, S., Fei, L., Liu, L. & Wang, Z. 2019.
Interaction between Cd and Zn on metal accumulation, translocation and mineral
nutrition in tall fescue (Festuca arundinacea). International Journal of Molecular
Sciences 20(13): 3332.
Ekmekçi, Y., Tanyolac, D. & Ayhan, B. 2008.
Effects of cadmium on antioxidant enzyme and photosynthetic activities in
leaves of two maize cultivars. Journal of Plant Physiology 165(6):
600-611.
Erakhrumen, A.A. & Agbontalor, A. 2007. Phytoremediation: An environmentally sound technology for
pollution prevention, control and remediation in developing countries. Educational
Research and Review 2(7): 151-156.
Farhat, N., Elkhouni, A., Zorrig, W., Smaoui, A., Abdelly, C. & Rabhi, M. 2016. Effects of magnesium deficiency on
photosynthesis and carbohydrate partitioning. Acta Physiologiae Plantarum 38(6): 145.
Ghosh,
M. & Singh, S.P. 2005. A review on phytoremediation of heavy metals and
utilization of it’s by products. Asian Journal on Energy and Environment 6(4): 18.
Gransee, A. & Führs, H. 2013. Magnesium mobility in soils as a challenge
for soil and plant analysis, magnesium fertilization and root uptake under
adverse growth conditions. Plant and Soil 368(1-2): 5-21.
Guala, S.D., Vega, F.A.
& Covelo, E.F. 2010. The dynamics of heavy metals in plant-soil interactions. Ecological Modelling 221(8): 1148-1152.
Hamim, H., Hilmi, M., Pranowo, D., Saprudin, D. & Setyaningsih,
L. 2017a. Morpho-physiological changes of biodiesel
producer plants Reutealis trisperma (Blanco) in response to gold-mining
wastewater. Pakistan Journal of Biological Sciences:
PJBS 20(9): 423-435.
Hamim, H., Violita, V., Triadiati, T. & Miftahudin, M. 2017b. Oxidative stress and photosynthesis
reduction of cultivated (Glycine max L.) and wild soybean (G. tomentella L.) exposed to drought and paraquat. Asian Journal of Plant Sciences 16(2):
65-77.
Hamim, H., Banon, S. & Dorly, D. 2016.
Comparison of physiological and anatomical changes of C3 (Oryza sativa [L.]) and C4 (Echinochloa crusgalli [L.]) leaves in response to drought stress. IOP
Conference Series: Earth and Environmental Science 31: 012040.
Herman,
M. & Pranowo, D. 2010. Kemiri sunan untuk konservasi tanah dan air. Sirkuler teknologi Tanaman Rempah dan Industri. Sukabumi: Balai Penelitian Tanaman Rempah dan Aneka Tanaman Industri.
Herman,
M., Syakir, M., Pranowo,
D., Syaefudin & Sumanto.
2013. Kemiri Sunan (Reutealistrisperma (Blanco) Airy Shaw) Vegetable Oil Producing Plant and Land
Conservation. Jakarta: IAARD
Press.
Hidayati, N., Juhaeti, T. & Syarif, F.
2009. Mercury and cyanide contaminations in gold mine environment and possible
solution of cleaning up by using phytoextraction. HAYATI
Journal of Biosciences 16(3): 88-94.
Hilmi, M., Hamim, Sulistyaningsih, Y.C. & Taufikurahman,
T. 2018. Growth, histochemical and physiological responses of non-edible oil
producing plant (Reutealis trisperma) to gold mine tailings. Biodiversitas Journal of Biological Diversity 19(4): 1294-1302.
Hu,
J., Guo, H., Li, J., Gan,
Q., Wang, Y. & Xing, B. 2017. Comparative impacts of iron oxide
nanoparticles and ferric ions on the growth of Citrus maxima. Environmental
Pollution 221: 199-208.
Korte, F., Spiteller, M. & Coulston, F.
2000. The cyanide leaching gold recovery process is a nonsustainable technology with unacceptable impacts on ecosystems and humans: The disaster in Romania. Ecotoxicology
and Environmental Safety 46(3): 241-245.
Kováčik, P., Baran, A., Filová, A., Vician, M. & Hudec, J. 2014.
Content changes of assimilative pigments in leaves after fertilizer Mg-Titanit application. Acta Fytotechnica et Zootechnica 17(2): 58-64.
Maksymiec, W. 2007. Signaling responses in plants to heavy metal
stress. Acta Physiologiae Plantarum29(3): 177-185.
Muddarisna, N. & Krisnayanti, B.D. 2015. Selection of mercury accumulator
plants for gold mine tailing contaminated soils. Journal of Degraded and
Mining Lands Management 2(3): 341-346.
Muddarisna, N., Krisnayanti, B.D., Utami, S.R.
& Handayanto, E. 2013. The potential of wild
plants for phytoremediation of soil contaminated with mercury of gold
cyanidation tailings. Journal of Environmental Science, Toxicology and Food
Technology 4(1): 15-19.
Nazar, R., Iqbal, N.,
Masood, A., Khan, M.I.R., Syeed, S. & Khan, N.A.
2012. Cadmium toxicity in plants and role of mineral nutrients in its
alleviation. American Journal of Plant Sciences 3(10): 1476-1489.
Nazar, R., Iqbal, N., Syeed, S. & Khan, N.A. 2011. Salicylic acid alleviates
decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur
assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology 168(8): 807-815.
Ono,
K., Yamamoto, Y., Hachiya, A. & Matsumoto, H.
1995. Synergistic inhibition of growth by aluminum and iron of tobacco (Nicotiana tabacum L.) cells in suspension culture. Plant and Cell Physiology 36(1):
115-125.
Popova, L.P., Maslenkova, L.T., Yordanova,
R.Y., Ivanova, A.P., Krantev,
A.P., Szalai, G. & Janda,
T. 2009. Exogenous treatment with salicylic acid attenuates cadmium toxicity in
pea seedlings. Plant Physiology and Biochemistry 47(3): 224-231.
Pranowo, D. & Herman, M. 2015. Potensi pengembangan kemiri sunan (Reutealis trisperma (blanco) airy shaw) di lahan terdegredasi. Perspektif 14: 87-102.
Qureshi,
M.I., D’Amici, G.M., Fagioni,
M., Rinalducci, S. & Zolla,
L. 2010. Iron stabilizes thylakoid protein-pigment
complexes in Indian mustard during Cd-phytoremediation as revealed by
BN-SDS-PAGE and ESI-MS/MS. Journal of Plant Physiology 167(10): 761-770.
Santos,
C.S., Roriz, M., Carvalho,
S.M. & Vasconcelos, M.W. 2015. Iron partitioning
at an early growth stage impacts iron deficiency responses in soybean plants (Glycine
max L.). Frontiers in Plant Science 6: 325.
Sarwar, N., Malhi, S.S., Zia, M.H., Naeem,
A., Bibi, S. & Farid, G. 2010. Role of mineral
nutrition in minimizing cadmium accumulation by plants. Journal of the
Science of Food and Agriculture 90(6): 925-937.
Sarwar, N., Imran, M., Shaheen, M.R., Ishaque, W.,
Kamran, M.A., Matloob, A., Rehim,
A. & Hussain, S. 2017. Phytoremediation strategies for soils contaminated
with heavy metals: Modifications and
future perspectives. Chemosphere 171: 710-721.
Savicka, M. & Škute, N. 2010. Effects of high temperature on malondialdehyde content, superoxide production and growth
changes in wheat seedlings (Triticum aestivum L.). Ekologija 56(1): 26-33.
Seth,
C.S. 2012. A review on mechanisms of plant tolerance and role of transgenic
plants in environmental clean-up. The Botanical Review 78(1): 32-62.
Seth,
C.S., Chaturvedi, P.K. & Misra,
V. 2007. Toxic effect of arsenate and cadmium alone and in combination on giant
duckweed (Spirodela polyrrhiza L.) in response to its accumulation. Environmental Toxicology: An
International Journal 22(6): 539-549.
Setyaningsih, L., Setiadi, Y., Budi, S.W. & Sopandie,
D. 2017. Lead accumulation by jabon seedling (Anthocephalus cadamba)
on tailing media with application of compost and arbuscular mycorrhizal fungi. IOP Conference Series: Earth
and Environmental Science 58(1): 012053.
Taiz, L. & Zeiger, E. 2010. Plant Physiology. Third
Edition. Sunderland: Sinauer Associates.
Tessarin, P., Ingrosso, E., Rombolà, A.D., Boliani, A.C., Covarrubias, J.I. & Yunta,
F. 2012. Improvement of grapevine iron nutrition by a bovine blood-derived
compound. VII International Symposium on Mineral Nutrition of Fruit Crops 984: 335-338.
Vamerali, T., Bandiera, M. & Mosca, G.
2010. Field crops for phytoremediation of metal-contaminated land. A review. Environmental Chemistry Letters 8(1): 1-17.
Wang,
M., Liu, X., Hu, J., Li, J. & Huang, J. 2015. Nano-ferric oxide promotes
watermelon growth. Journal of Biomaterials and Nanobiotechnology 6(03): 160-167.
Xu,
J., Yin, H. & Li, X. 2009. Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L. Plant Cell Reports 28(2):
325-333.
Zornoza, P.,
Sánchez-Pardo, B. & Carpena, R.O. 2010.
Interaction and accumulation of manganese and cadmium in the manganese
accumulator Lupinus albus. Journal of Plant Physiology 167(13): 1027-1032.
*Corresponding author; email: hamim@apps.ipb.ac.id
|