Sains
Malaysiana 49(9)(2020): 2251-2260
http://dx.doi.org/10.17576/jsm-2020-4909-22
Synthesis
and Characterization of Acylated Low Molecular Weight Chitosan and Acylated Low
Molecular Weight Phthaloyl Chitosan
(Sintesis
dan Pencirian Kitosan Berjisim Molekul Rendah Terasil dan Kitosan Ftaloil
Berjisim Molekul Rendah Terasil)
RAHADIAN
PERMADI, VICIT RIZAL EH SUK & MISNI MISRAN*
Department of Chemistry, Faculty of Science, Universiti
Malaya, 50603 Kuala Lumpur, Federal Territory
Malaysia
Received:
15 October 2019/Accepted: 8 May 2020
ABSTRACT
Oral drug delivery is one of the most
convenient routes due to its painless administration and high patient
compliance. However, oral administration is becoming more difficult to be
conducted due to its poor water solubility, poor dissolution rate, and low oral
bioavailability in the gastrointestinal tract. Herein, we develop a strategy to
produce a chemically modified chitosan using depolymerization and introducing
hydrophobic groups onto the chitosan backbone through acylation. By modifying
the structure of chitosan, we aim to overcome limitations of drug delivery
before and after the oral administration. The successful acylation of protected
(using phthalic anhydride) chitosan and unprotected (without phthalic
anhydride) chitosan was proved by Fourier transform infrared (FTIR). FTIR was
conducted not only to characterize the functional group changes but also to
find quantization of degree of acylation (DA) and the degree of substitution
(DS) of chitosan before and after acylation. The particle size of chitosan was
found ranges from 300-500 nm with zeta potential value shifted from -50 mV to a
more positive value as acid anhydrides concentration increased. The Field
Emission Scanning Electron Microscopy (FESEM) images showed the low molecular
weight of chitosan and acylated chitosan nanoparticle possess non-spherical
form with hollow structure. In addition, the size obtained was in accordance
with the size measured by particle size. Hydrophobically modified chitosan has
been successfully synthesized via acylation on both primary hydroxyl and amine
groups on the backbone of chitosan. This chemically modified chitosan can
enhance drug solubilization as well as improving biocompatibility and
degradability.
Keywords: Acylation; biomaterials;
chitosan; oral drug delivery; polymer synthesis
ABSTRAK
Penghantaran ubatan melalui oral merupakan
cara paling mudah berikutan tidak menyakitkan dan dipatuhi oleh pesakit. Walau
bagaimanapun, kaedah oral menjadi susah untuk dijalankan berikutan keterlarutan
air yang rendah, kadar pelarutan yang rendah dan bioketersediaan oral yang
rendah pada saluran perut usus. Di sini, kami membangunkan strategi untuk
menghasilkan kitosan terubah suai kimia menggunakan kaedah pempolimeran dan
memperkenalkan kumpulan hidrofobik pada rantaian kitosan melalui tindakan
pengasilan. Dengan mengubah suai struktur kitosan, kajian ini bertujuan untuk
mengatasi batasan penghantaran ubatan sebelum dan selepas pengambilan secara
oral. Kejayaan proses pengasilan pada kitosan terlindung (menggunakan anhidrida
phthalik) dan kitosan tak terlindung (tanpa anhidrida phthalik) telah
dibuktikan menggunakan spektroskopi inframerah transformasi Fourier (FTIR).
FTIR bukan sahaja digunakan untuk pencirian kumpulan berfungsi tetapi juga
untuk mengkuantumkan darjah pengasilan (DA) dan darjah penukargantian (DS)
kitosan sebelum dan selepas pengasilan. Purata saiz zarah kitosan adalah antara
300-500 nm dengan nilai keupayaan zeta dianjakkan dari -50 mV ke nilai yang
semakin positif selari dengan peningkatan kepekatan asid anhidrida. Mikrograf
daripada mikroskop pengimbas elektron medan pancaran (FESEM) menunjukkan
nanozarah kitosan berjisim molekul rendah dan kitosan terasil mempunyai bentuk
tak sfera dengan struktur berongga. Tambahan lagi, saiz yang diperoleh adalah
bertepatan dengan purata zarah saiz yang telah diukur. Kitosan terubah suai
hidrofobik telah berjaya disintesis melalui pengasilan pada kumpulan hidroksil
primer dan amina pada rantaian kitosan. Kitosan terubah suai kimia ini berupaya
untuk meningkatkan pemelarutan ubatan dan juga menambahbaik biokeserasian dan
penguraian.
Kata kunci: Biobahan; kitosan; pengasilan;
penghantaran ubatan oral; sintesis polimer
REFERENCES
Araujo, F., das Neves, J., Martins,
J.P., Granja, P.L., Santos, H.A. & Sarmento, B. 2017. Functionalized
materials for multistage platforms in the oral delivery of biopharmaceuticals. Progress in Materials Science 89:
306-344.
Balata,
G.F., Abdelhady, M.I.S., Mahmoud, G.M., Matar, M.A. & Abd El-Latif, A.N.
2018. Formulation of saudi propolis into biodegradable chitosan chips for vital
pulpotomy. Current Drug Delivery 15(1): 97-109.
Banerjee,
A., Qi, J.P., Gogoi, R., Wong, J. & Mitragotri, S. 2016. Role of nanoparticle
size, shape and surface chemistry in oral drug delivery. Journal of Controlled Release 238: 176-185.
Bondar,
O.V., Saifullina, D.V., Shakhmaeva, I.I., Mavlyutova, I.I. & Abdullin, T.I.
2012. Monitoring of the zeta potential of human cells upon reduction in their
viability and interaction with polymers. Acta
Naturae 4(1): 78-81.
Choi,
H.J., Kim, M.C., Kang, S.M. & Montemagno, C.D. 2014. The osmotic stress
response of split influenza vaccine particles in an acidic environment. Archives of Pharmacal Research 37(12):
1607-1616.
Choi,
H.J., Ebersbacher, C.F., Kim, M.C., Kang, S.M. & Montemagno, C.D. 2013. A
mechanistic study on the destabilization of whole inactivated influenza virus
vaccine in gastric environment. PloS ONE 8(6): e66316.
Ensign,
L.M., Cone, R. & Hanes, J. 2012. Oral drug delivery with polymeric
nanoparticles: The gastrointestinal mucus barriers. Advanced Drug Delivery Reviews 64(6): 557-570.
He,
Y., Miao, J., Chen, S., Zhang, R., Zhang, L., Tang, H. & Yang, H. 2019.
Preparation and characterization of a novel positively charged composite hollow
fiber nanofiltration membrane based on chitosan lactate. RSC Advances 9(8): 4361-4369.
Homayun,
B., Lin, X.T. & Choi, H.J. 2019. Challenges and recent progress in oral
drug delivery systems for biopharmaceuticals. Pharmaceutics 11(3): 129.
Hu,
Q.B. & Luo, Y.C. 2018. Recent advances of polysaccharide-based
nanoparticles for oral insulin delivery. International
Journal of Biological Macromolecules 120(Part A): 775-782.
Kasaai,
M.R. 2008. A review of several reported procedures to determine the degree of
N-acetylation for chitin and chitosan using infrared spectroscopy. Carbohydrate Polymers 71(4): 497-508.
Khajuria,
D.K., Patil, O.N., Karasik, D. & Razdan, R. 2018. Development and
evaluation of novel biodegradable chitosan based metformin intrapocket dental
film for the management of periodontitis and alveolar bone loss in a rat model. Archives of Oral Biology 85: 120-129.
Klodzinska,
E., Szumski, M., Dziubakiewicz, E., Hrynkiewicz, K., Skwarek, E., Janusz, W.
& Buszewski, B. 2010. Effect of zeta potential value on bacterial behavior
during electrophoretic separation. Electrophoresis 31(9): 1590-1596.
Kurita,
K., Ikeda, H., Yoshida, Y., Shimojoh, M. & Harata, M. 2002. Chemoselective
protection of the amino groups of chitosan by controlled phthaloylation: Facile
preparation of a precursor useful for chemical modifications. Biomacromolecules 3(1): 1-4.
Lee,
D., Quan, Z.S., Lu, C., Jeong, J.A., Song, C., Song, M.S. & Chai, K.Y.
2012. Preparation and physical properties of chitosan benzoic acid derivatives
using a phosphoryl mixed anhydride system. Molecules 17(2): 2231-2239.
Lee,
K.Y., Jo, W.H., Kwon, I.C., Kim, Y.H. & Jeong, S.Y. 1998. Structural
determination and interior polarity of self-aggregates prepared from
deoxycholic acid-modified chitosan in water. Macromolecules 31(2): 378-383.
Mai,
T.T.T., Ha, P.T., Pham, H.N., Le, T.T.H., Pham, H.L., Phan, T.B.H. &
Nguyen, X.P. 2012. Chitosan and O-carboxymethyl chitosan modified Fe3O4 for hyperthermic treatment. Advances in
Natural Sciences: Nanoscience and Nanotechnology 3(1): 015006.
Mekhail,
G.M., Kamel, A.O., Awad, G.A.S. & Mortada, N.D. 2012. Anticancer effect of
atorvastatin nanostructured polymeric micelles based on stearyl-grafted
chitosan. International Journal of
Biological Macromolecules 51(4): 351-363.
Priyadarshini,
N, Sampath, M., Kumar, S. & Kamachi Mudali, U. 2013. Particle size
variation and prediction of molecular weight of Bi (III) dydrolyzed polymer
using light scattering technique. ISRN
Inorganic Chemistry 2013: Article ID. 194120.
Ren,
X., Chen, C., Hou, Y., Huang, M., Li, Y.B., Wang, D.Q. & Zhang, L. 2018.
Biodegradable chitosan-based composites with dual functions acting as the bone
scaffold and the inflammation inhibitor in the treatment of bone defects. International Journal of Polymeric Materials
and Polymeric Biomaterials 67(12): 703-710.
Takayama,
K., Hirata, M., Machida, Y., Masada, T., Sannan, T. & Nagai, T. 1990.
Effect of interpolymer complex-formation on bioadhesive property and drug
release phenomenon of compressed tablet consisting of chitosan and sodium
hyaluronate. Chemical &
Pharmaceutical Bulletin 38(7): 1993-1997.
Tan,
H.W. & Misran, M. 2013. Polysaccharide-anchored fatty acid liposome. International Journal of Pharmaceutics 441(1-2): 414-423.
Tiew,
S.X. & Misran, M. 2017. Encapsulation of salicylic acid in acylated low
molecular weight chitosan for sustained release topical application. Journal of Applied Polymer Science 134(36): 44849.
Werle,
M., Takeuchi, H. & Bernkop-Schnurch, A. 2009. Modified chitosans for oral
drug delivery. Journal of Pharmaceutical
Sciences 98(5): 1643-1656.
Wu,
C., Zhou, S.Q. & Wang, W. 1995. A dynamic laser light-scattering study of
chitosan in aqueous-solution. Biopolymers 35(4): 385-392.
Yu,
Z., Li, B.Q., Chu, J.Y. & Zhang, P.F. 2018. Silica in situ enhanced PVA/chitosan biodegradable films for food
packages. Carbohydrate Polymers 184(2018): 214-220.
Yuan,
Y. & Lee, T.R. 2013. Surface science techniques. Springer Series in Surface Sciences 51(1): 3-34.
*Corresponding
author; email: misni@um.edu.my
|