Sains Malaysiana 49(9)(2020): 2293-2300

http://dx.doi.org/10.17576/jsm-2020-4909-26

 

Density Measurement, Tensile, and Morphology Properties of Polylactic Acid Biocomposites Foam Reinforced with Different Kenaf Filler Loading

(Ukuran Ketumpatan, Sifat Regangan dan Morfologi Biokomposit Berbusa Asid Polilaktik Berpenguat Pengisi Kenaf dengan Pembebanan Berbeza)

 

NUR ADILAH ABU HASSAN1, SAHRIM AHMAD1,2 & RUEY SHAN CHEN1,2*

 

1Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Materials Science Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 15 October 2019/Accepted: 8 May 2020

 

ABSTRACT

This paper investigates the performance of polylactic acid (PLA)/kenaf fiber (KF) composites foamed using azodicarbonamide (AC) in terms of density, mechanical, and morphology aspects. The KF loading was varied in the range of 20-40 wt. %. The mixtures were compounded using a co-rotating twin-screw extruder and followed by hot-cold pressing in order to prepare test specimens for characterization. The density of the foamed composites showed a fluctuate trend where it decreased at lower KF loading (0-20 wt. %) while further increasing fiber loading (30-40 wt. %) resulted in an increase of the composites density. Tensile results showed that the optimum loading of KF was achieved at 30 wt. % with an improvement of 135, 153, and 27.6% for stress at yield, strain at break and Young modulus, respectively, as compared to neat PLA foam. Field emission scanning electron microscope (FESEM) micrographs confirmed the fiber dispersion and morphological interaction between PLA and KF components.

 

Keywords: Biopolymer; foaming process; lightweight material; mechanical properties; microcellular foam

 

ABSTRAK

Kertas ini mengkaji prestasi komposit asid polilaktik (PLA)/gentian kenaf (KF) dibusakan dengan menggunakan azodikarbonamida (AC) dari segi aspek mekanik, ketumpatan dan morfologi. Kandungan KF divariasikan dalam lingkungan 20-40 % bt. Campuran diadunkan dengan menggunakan mesin penyemperit skru berkembar searah dan diikuti dengan penekanan panas dan sejuk bagi menyediakan spesimen untuk dianalisis. Ketumpatan bagi komposit berbusa menunjukkan tren turun-naik kerana ia menurun pada kandungan KF yang rendah (0-20 % bt.) manakala kandungan KF yang semakin meningkat (30-40 % bt.) telah menyebabkan peningkatan ketumpatan komposit. Keputusan ujian regangan menunjukkan bahawa kandungan optimum KF telah dicapai pada 30 % bt. dengan peningkatan sebanyak 135, 153 dan 27.6% masing-masing pada kekuatan regangan, pemanjangan pada takat putus dan modulus Young berbanding dengan PLA berbusa. Mikrograf pancaran medan mikroskop elektron pengimbasan (FESEM) mengesahkan penyebaran gentian dan interaksi antara muka antara komponen PLA dan KF.

 

Kata kunci: Bahan ringan; biopolimer; busa mikrosel; proses membusa; sifat mekanik

 

REFERENCES

 

Akhtar, M.N., Sulong, A.B., Radzi, M.K.F., Ismail, N.F., Raza, M.R., Muhamad, N. & Khan, M. A. 2016. Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Progress in Natural Science: Materials International 26(6): 657-664. doi:10.1016/j.pnsc.2016.12.004.

Bergeret, A. & Benezet, J.C. 2011. Natural fibre-reinforced biofoams. International Journal of Polymer Science 2011. doi:10.1155/2011/569871.

Bocz, K., Tábi, T., Vadas, D., Sauceau, M., Fages, J. & Marosi, G. 2016. Characterisation of natural fibre reinforced PLA foams prepared by supercritical CO2 assisted extrusion. Express Polymer Letters 10(9): 771-779. doi:10.3144/expresspolymlett.2016.71.

Chen, R.S., Ahmad, S., Gan, S., Salleh, M.N., Ab Ghani, M.H. & Tarawneh, M.A. 2016. Effect of polymer blend matrix compatibility and fibre reinforcement content on thermal stability and flammability of ecocomposites made from waste materials. Thermochimica Acta 640: 52-61. doi:10.1016/j.tca.2016.08.005.

Chen, R.S., Ab Ghani, M.H., Ahmad, S., Salleh, M.N. & Tarawneh, M.A. 2015. Rice husk flour biocomposites based on recycled high-density polyethylene/polyethylene terephthalate blend: Effect of high filler loading on physical, mechanical and thermal properties. Journal of Composite Materials 49(10): 1241-1253. doi:10.1177/0021998314533361.

Chen, R.S., Ahmad, S., Ghani, M.H.A. & Salleh, M.N. 2014. Optimization of high filler loading on tensile properties of recycled HDPE/PET blends filled with rice husk. AIP Conference Proceedings  51: 46-51. doi:10.1063/1.4895168.

Ding, W. 2016. Development of polylactic acid/cellulose nanofiber biocomposite foams development of polylactic acid/cellulose nanofiber biocomposite foams. University of Toronto. Ph.D. Thesis (Unpublished).

Göttermann, S., Weinmann, S., Bonten, C., Standau, T. & Altstädt, V. 2016. Modified standard polylactic acid (PLA) for extrusion foaming. AIP Conference Proceedings 1779(1): 060001. doi:10.1063/1.4965522.

Hafizah, N.A.K., Hussin, M.W., Jamaludin, M.Y., Bhutta, M.A.R., Ismail, M. & Azman, M. 2014. Tensile behaviour of kenaf fiber reinforced polymer composites. Jurnal Teknologi 69(3): 11-15. doi:10.11113/jt.v69.3138.

Han, S.O., Karevan, M., Sim, I.N., Bhuiyan, M.A., Jang, Y.H., Ghaffar, J. & Kalaitzidou, K. 2012. Understanding the reinforcing mechanisms in kenaf fiber/pla and kenaf fiber/pp composites: A comparative study. International Journal of Polymer Science 2012: Paper ID. 679252. doi:10.1155/2012/679252.

Ibrahim, N.A., Yunus, W.M.Z.W., Othman, M., Abdan, K. & Hadithon, K.A. 2010. Poly(Lactic Acid) (PLA)-reinforced kenaf bast fiber composites: The effect of triacetin. Journal of Reinforced Plastics and Composites 29(7): 1099-1111. doi:10.1177/0731684409344651.

Jandas, P.J., Mohanty, S. & Nayak, S.K. 2013. Surface treated banana fiber reinforced poly (lactic acid) nanocomposites for disposable applications. Journal of Cleaner Production 52: 392-401. doi:10.1016/j.jclepro.2013.03.033.

Kamarudin, S.H., Abdullah, L.C., Aung, M.M. & Ratnam, C.T. 2018. A study of mechanical and morphological properties of PLA based biocomposites prepared with EJO vegetable oil based plasticiser  and kenaf fibres. Materials Research Express 5(8): p.085314. doi: 10.1088/2053-1591/aabb89.

Karim, A.F.A., Ismail, H. & Ariff, Z.M. 2016. Properties and characterization of kenaf-filled natural rubber latex foam. BioResources 11(1): 1080-1091. doi:10.15376/biores.11.1.1080-1091.

Khoo, R.Z. & Chow, W.S. 2017. Mechanical and thermal properties of poly(lactic acid)/sugarcane bagasse fiber green composites. Journal of Thermoplastic Composite Materials 30(8): 1091-1102. doi:10.1177/0892705715616857.

Matuana, L.M. & Faruk, O. 2010. Effect of gas saturation conditions on the expansion ratio of microcellular poly (lactic acid)/wood-flour composites. Express Polymer Letters 4(10): 621-631. doi:10.3144/expresspolymlett.2010.77.

Matuana, L.M., Faruk, O. & Diaz, C.A. 2009. Cell morphology of extrusion foamed poly(lactic acid) using endothermic chemical foaming agent. Bioresource Technology 100(23): 5947-5954. doi:10.1016/j.biortech.2009.06.063.

Mohammed, L., Ansari, M.N.M., Pua, G., Jawaid, M. & Islam, M.S. 2015. A review on natural fiber reinforced polymer composite and its applications. International Journal of Polymer Science 2015: Paper ID. 243947. doi:10.1155/2015/243947.

Najafi, N., Heuzey, M.C., Carreau, P.J., Therriault, D. & Park, C.B. 2015. Mechanical and morphological properties of injection molded linear and branched-polylactide (PLA) nanocomposite foams. European Polymer Journal 73: 455-465. doi:10.1016/j.eurpolymj.2015.11.003.

Neagu, R.C., Cuénoud, M., Berthold, F., Bourban, P.E., Gamstedt, E.K., Lindström, M. & Månson, J.A.E. 2009. Processing and mechanical properties of novel wood fibre composites foams. In International Conferences on Composite Materials (ICCM). https://www.researchgate.net/publication/268257395_Processing_and_mechanical_properties_of_novel_wood_fibre_composites_foams.

Pilla, S., Kramschuster, A., Lee, J., Auer, G.K., Gong, S. & Turng, L.S. 2009. Microcellular and solid polylactide-flax fiber composites. Composite Interfaces 16(7-9): 869-890. doi:10.1163/092764409X12477467990283.

Shahdan, D., Chen, R.S., Ahmad, S., Zailan, F.D. & Mat Ali, A. 2018. Assessment of mechanical performance, thermal stability and water resistance of novel conductive poly(lactic acid)/modified natural rubber blends with low loading of polyaniline. Polymer International 6(8): 1070-1080. doi:10.1002/pi.5613.

Sun, Z., Zhang, L., Liang, D., Xiao, W. & Lin, J. 2017. Mechanical and thermal properties of PLA biocomposites reinforced by coir fibers. International Journal of Polymer Science 2017: 1-8. doi:10.1155/2017/2178329.

Takagi, H., Nakagaito, A.N. & Liu, K. 2014. Heat transfer analyses of natural fibre composites. High Performance and Optimum Design of Structures and Materials 137: 237-243. doi:10.2495/HPSM140211.

Teymoorzadeh, H. & Rodrigue, D. 2016. Morphological, mechanical, and thermal properties of injection molded polylactic acid foams/composites based on wood flour. Journal of Cellular Plastics 54(2): 179-197. doi:10.1177/0021955X16671304.

Wang, Y., Qi, R., Xiong, C. & Huang, M. 2011. Effects of coupling agent and interfacial modifiers on mechanical properties of poly (lactic acid) and wood flour biocomposites. Iran Polymer Journal 20(4): 281-294.

Zhang, L., Lv, S., Sun, C., Wan, L., Tan, H. & Zhang, Y. 2017. Effect of MAH-g-PLA on the properties of wood fiber/polylactic acid composites. Polymers 9(11): 5-8. doi:10.3390/polym9110591.

 

*Corresponding author; email: chen@ukm.edu.my

 

previous