Sains
Malaysiana 49(9)(2020): 2293-2300
http://dx.doi.org/10.17576/jsm-2020-4909-26
Density
Measurement, Tensile, and Morphology Properties of Polylactic Acid
Biocomposites Foam Reinforced with Different Kenaf Filler Loading
(Ukuran
Ketumpatan, Sifat Regangan dan Morfologi Biokomposit Berbusa Asid Polilaktik Berpenguat Pengisi Kenaf dengan Pembebanan Berbeza)
NUR
ADILAH ABU HASSAN1, SAHRIM AHMAD1,2 & RUEY SHAN CHEN1,2*
1Department of Applied Physics, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Materials Science Programme, Faculty
of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor Darul Ehsan, Malaysia
Received: 15 October 2019/Accepted:
8 May 2020
ABSTRACT
This paper
investigates the performance of polylactic acid (PLA)/kenaf fiber (KF)
composites foamed using azodicarbonamide (AC) in terms of density, mechanical,
and morphology aspects. The KF loading was varied in the range of 20-40 wt. %.
The mixtures were compounded using a co-rotating twin-screw extruder and
followed by hot-cold pressing in order to prepare test specimens for
characterization. The density of the foamed composites showed a fluctuate trend
where it decreased at lower KF loading (0-20 wt. %) while further increasing
fiber loading (30-40 wt. %) resulted in an increase of the composites density.
Tensile results showed that the optimum loading of KF was achieved at 30 wt. %
with an improvement of 135, 153, and 27.6% for stress at yield, strain at break
and Young modulus, respectively, as compared to neat PLA foam. Field emission
scanning electron microscope (FESEM) micrographs confirmed the fiber dispersion
and morphological interaction between PLA and KF components.
Keywords: Biopolymer; foaming process;
lightweight material; mechanical properties; microcellular foam
ABSTRAK
Kertas
ini mengkaji prestasi komposit asid polilaktik (PLA)/gentian kenaf (KF) dibusakan
dengan menggunakan azodikarbonamida (AC) dari segi aspek mekanik, ketumpatan
dan morfologi. Kandungan KF divariasikan dalam lingkungan 20-40 % bt. Campuran
diadunkan dengan menggunakan mesin penyemperit skru berkembar searah dan
diikuti dengan penekanan panas dan sejuk bagi menyediakan spesimen untuk
dianalisis. Ketumpatan bagi komposit berbusa menunjukkan tren turun-naik kerana
ia menurun pada kandungan KF yang rendah (0-20 % bt.) manakala kandungan KF yang
semakin meningkat (30-40 % bt.) telah menyebabkan peningkatan ketumpatan
komposit. Keputusan ujian regangan menunjukkan bahawa kandungan optimum KF
telah dicapai pada 30 % bt. dengan peningkatan sebanyak 135, 153 dan 27.6%
masing-masing pada kekuatan regangan, pemanjangan pada takat putus dan modulus
Young berbanding dengan PLA berbusa. Mikrograf pancaran medan mikroskop
elektron pengimbasan (FESEM) mengesahkan penyebaran gentian dan interaksi
antara muka antara komponen PLA dan KF.
Kata kunci: Bahan ringan; biopolimer; busa mikrosel; proses membusa; sifat mekanik
REFERENCES
Akhtar, M.N., Sulong, A.B., Radzi, M.K.F., Ismail, N.F., Raza, M.R., Muhamad, N. & Khan, M. A. 2016. Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Progress in Natural Science: Materials International 26(6): 657-664. doi:10.1016/j.pnsc.2016.12.004.
Bergeret, A. & Benezet, J.C. 2011. Natural
fibre-reinforced biofoams. International Journal of Polymer Science 2011. doi:10.1155/2011/569871.
Bocz, K., Tábi, T., Vadas, D.,
Sauceau, M., Fages, J. & Marosi, G. 2016. Characterisation of natural fibre
reinforced PLA foams prepared by supercritical CO2 assisted
extrusion. Express Polymer Letters 10(9): 771-779.
doi:10.3144/expresspolymlett.2016.71.
Chen, R.S., Ahmad, S., Gan, S.,
Salleh, M.N., Ab Ghani, M.H. & Tarawneh, M.A. 2016. Effect of polymer blend
matrix compatibility and fibre reinforcement content on thermal stability and
flammability of ecocomposites made from waste materials. Thermochimica Acta 640: 52-61. doi:10.1016/j.tca.2016.08.005.
Chen, R.S., Ab Ghani, M.H., Ahmad,
S., Salleh, M.N. & Tarawneh, M.A. 2015. Rice husk flour biocomposites based
on recycled high-density polyethylene/polyethylene terephthalate blend: Effect
of high filler loading on physical, mechanical and thermal properties. Journal
of Composite Materials 49(10): 1241-1253. doi:10.1177/0021998314533361.
Chen, R.S., Ahmad, S., Ghani, M.H.A.
& Salleh, M.N. 2014. Optimization of high filler loading on tensile
properties of recycled HDPE/PET blends filled with rice husk. AIP Conference
Proceedings 51: 46-51.
doi:10.1063/1.4895168.
Ding, W. 2016. Development of
polylactic acid/cellulose nanofiber biocomposite foams development of
polylactic acid/cellulose nanofiber biocomposite foams. University of Toronto.
Ph.D. Thesis (Unpublished).
Göttermann, S., Weinmann, S., Bonten, C., Standau, T. & Altstädt, V. 2016. Modified standard polylactic acid (PLA) for extrusion foaming. AIP Conference Proceedings 1779(1): 060001. doi:10.1063/1.4965522.
Hafizah, N.A.K., Hussin, M.W.,
Jamaludin, M.Y., Bhutta, M.A.R., Ismail, M. & Azman, M. 2014. Tensile
behaviour of kenaf fiber reinforced polymer composites. Jurnal Teknologi 69(3): 11-15. doi:10.11113/jt.v69.3138.
Han, S.O., Karevan, M., Sim, I.N., Bhuiyan, M.A., Jang, Y.H., Ghaffar, J. & Kalaitzidou, K. 2012. Understanding the reinforcing mechanisms in kenaf fiber/pla and kenaf fiber/pp composites: A comparative study. International Journal of Polymer Science 2012: Paper ID. 679252. doi:10.1155/2012/679252.
Ibrahim, N.A., Yunus, W.M.Z.W.,
Othman, M., Abdan, K. & Hadithon, K.A. 2010. Poly(Lactic Acid)
(PLA)-reinforced kenaf bast fiber composites: The effect of triacetin. Journal
of Reinforced Plastics and Composites 29(7): 1099-1111.
doi:10.1177/0731684409344651.
Jandas, P.J., Mohanty, S. & Nayak, S.K. 2013. Surface treated banana fiber reinforced poly (lactic acid) nanocomposites for disposable applications. Journal of Cleaner Production 52: 392-401. doi:10.1016/j.jclepro.2013.03.033.
Kamarudin, S.H., Abdullah, L.C.,
Aung, M.M. & Ratnam, C.T. 2018. A study of mechanical and morphological
properties of PLA based biocomposites prepared with EJO vegetable oil based
plasticiser and kenaf fibres. Materials
Research Express 5(8): p.085314. doi: 10.1088/2053-1591/aabb89.
Karim, A.F.A., Ismail, H. & Ariff,
Z.M. 2016. Properties and characterization of kenaf-filled natural rubber latex
foam. BioResources 11(1): 1080-1091. doi:10.15376/biores.11.1.1080-1091.
Khoo, R.Z. & Chow, W.S. 2017. Mechanical and thermal properties of poly(lactic acid)/sugarcane bagasse fiber green composites. Journal of Thermoplastic Composite Materials 30(8): 1091-1102. doi:10.1177/0892705715616857.
Matuana, L.M. & Faruk, O. 2010.
Effect of gas saturation conditions on the expansion ratio of microcellular
poly (lactic acid)/wood-flour composites. Express Polymer Letters 4(10):
621-631. doi:10.3144/expresspolymlett.2010.77.
Matuana, L.M., Faruk, O. & Diaz,
C.A. 2009. Cell morphology of extrusion foamed poly(lactic acid) using
endothermic chemical foaming agent. Bioresource Technology 100(23):
5947-5954. doi:10.1016/j.biortech.2009.06.063.
Mohammed, L., Ansari, M.N.M., Pua, G., Jawaid, M. & Islam, M.S. 2015. A review on natural fiber reinforced polymer composite and its applications. International Journal of Polymer Science 2015: Paper ID. 243947. doi:10.1155/2015/243947.
Najafi, N., Heuzey, M.C., Carreau, P.J., Therriault, D. & Park, C.B. 2015. Mechanical and morphological properties of injection molded linear and branched-polylactide (PLA) nanocomposite foams. European Polymer Journal 73: 455-465. doi:10.1016/j.eurpolymj.2015.11.003.
Neagu, R.C., Cuénoud, M., Berthold,
F., Bourban, P.E., Gamstedt, E.K., Lindström, M. & Månson, J.A.E. 2009.
Processing and mechanical properties of novel wood fibre composites foams. In International
Conferences on Composite Materials (ICCM).
https://www.researchgate.net/publication/268257395_Processing_and_mechanical_properties_of_novel_wood_fibre_composites_foams.
Pilla, S., Kramschuster, A., Lee, J., Auer, G.K., Gong, S. & Turng, L.S. 2009. Microcellular and solid polylactide-flax fiber composites. Composite Interfaces 16(7-9): 869-890. doi:10.1163/092764409X12477467990283.
Shahdan, D., Chen, R.S., Ahmad, S.,
Zailan, F.D. & Mat Ali, A. 2018. Assessment of mechanical performance,
thermal stability and water resistance of novel conductive poly(lactic
acid)/modified natural rubber blends with low loading of polyaniline. Polymer
International 6(8): 1070-1080. doi:10.1002/pi.5613.
Sun, Z., Zhang, L., Liang, D., Xiao, W. & Lin, J. 2017. Mechanical and thermal properties of PLA biocomposites reinforced by coir fibers. International Journal of Polymer Science 2017: 1-8. doi:10.1155/2017/2178329.
Takagi, H., Nakagaito, A.N. & Liu, K. 2014. Heat transfer analyses of natural fibre composites. High Performance and Optimum Design of Structures and Materials 137: 237-243. doi:10.2495/HPSM140211.
Teymoorzadeh, H. & Rodrigue, D. 2016. Morphological, mechanical, and thermal properties of injection molded polylactic acid foams/composites based on wood flour. Journal of Cellular Plastics 54(2): 179-197. doi:10.1177/0021955X16671304.
Wang, Y., Qi, R., Xiong, C. & Huang, M. 2011. Effects of coupling agent and interfacial modifiers on mechanical properties of poly (lactic acid) and wood flour biocomposites. Iran Polymer Journal 20(4): 281-294.
Zhang, L., Lv, S., Sun, C., Wan, L., Tan, H. & Zhang, Y. 2017. Effect of MAH-g-PLA on the properties of wood fiber/polylactic acid composites. Polymers 9(11): 5-8. doi:10.3390/polym9110591.
*Corresponding author; email: chen@ukm.edu.my
|