Sains Malaysiana 49(9)(2020): 2281-2291
http://dx.doi.org/10.17576/jsm-2020-4909-25
Crack-Healing Investigation
in Asphalt Mixture with Modified Thermoplastic-Bitumen Composite
(Kajian Pemulihan-Keretakan dalam Campuran Asfalt dengan Termoplastik Terubah Suai - Komposit Bitumen)
MOHD SUZEREN MD JAMIL, WAN NAQIUDDIN WAN ZULRUSHDI*
& NOOR NABILAH MUHAMAD
Department of Chemical Sciences, Faculty of Science
and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 15 October 2019/Accepted: 18 June 2020
ABSTRACT
This study aims to investigate the crack-healing of
asphalt mixture by induction heating of bitumen-thermoplastic binder. This
system employs a heterogeneous mixture, in which different percentages (2, 4,
6, and 8% by weigh) of thermoplastic healing agent (polyethylene (PE) and
polypropylene (PP)) dissolve with the bitumen, respectively. Healing was
achieved by heating the fractured asphalt composite to a specific temperature;
in which heterogeneous blend has undergone random molecule diffusion and
volumetric thermal expansion of healing agent within the matrix. The thermal
properties in the bitumen-thermoplastic were characterized by means of dynamic
mechanical thermal analysis (DMTA); in which the glass transition temperature (Tg) has been used as a reference
for the healing process. The FTIR shows no
chemical reaction between bitumen and thermoplastic. Three-point bending test
was conducted to demonstrate details crack-healing capability in asphalt
composite. The results show that 6% of PE and PP to the mixture of
bitumen-thermoplastic has the highest tensile strength. The percentage of
recovery was also measured through the healing cycle process using a
three-point bending test. Overall, within the third healing cycle, asphalt
composite with modified bitumen (with PP or PE) shows 98-55% of healing
recovery. The best percentage recovery is using bitumen-PP mixture with a ratio
of 94:6. The
crack-healing process was also proven through the surface and cross-section
asphalt morphology analyses using optical microscopy and scanning electron
microscope (SEM).
Keywords:
Asphalt; bitumen-thermoplastic; crack healing; healing agent
ABSTRAK
Fokus kajian ini adalah untuk mengkaji kesan pemulihan keretakan bagi
campuran asfalt melalui proses pemanasan pada pengikat bitumen-termoplastik.
Sistem ini menggunakan campuran heterogen; agen pemulihan termoplastik
(polietilena (PE) dan polipropilena (PP)) dengan peratusan yang berbeza (2, 4,
6 dan 8% keseluruhan berat) dicampurkan bersama bitumen. Pemulihan dapat
dicapai melalui pemanasan komposit asfalt yang mengalami keretakan pada suhu
tertentu; campuran heterogen ini akan melalui proses penyebaran molekul secara
rawak dan pengembangan volumetrik termal agen pemulihan dalam matriks. Sifat
termal untuk bitumen-termoplastik dapat dicirikan melalui analisis haba mekanik
dinamik (DMTA); suhu peralihan kaca (Tg) telah digunakan sebagai rujukan bagi
proses pemulihan. FTIR menunjukkan tiadanya interaksi kimia antara bitumen dan
termoplastik. Ujian lenturan tiga titik dijalankan untuk membuktikan keupayaan
pemulihan retak dalam komposit asfalt. Keputusan kekuatan tegangan yang
tertinggi ditunjukkan bagi campuran bitumen-termoplastik dengan 6% PE atau PP.
Peratusan pemulihan juga diukur melalui proses kitaran pemulihan menggunakan
ujian lenturan tiga titik. Secara
keseluruhan, komposit asfalt dengan bitumen yang diubah suai (dengan PP atau
PE) menunjukkan 98-55% pemulihan keretakan berdasarkan tiga kitaran pemulihan.
Peratusan pemulihan yang terbaik dapat dicapai dengan menggunakan campuran
bitumen-PP dengan nisbah 94:6. Proses pembaikan retak juga telah dibuktikan
melalui analisis morfologi asfalt permukaan dan keratan rentas menggunakan
mikroskop optik dan mikroskopi elektron pengimbasan (SEM).
Kata kunci: Agen pemulihan; asfalt; bitumen-termoplastik; pembaikan retak
REFERENCES
ASTM E647. 2000. Standard
Test Method for Measurement of Fatigue Crack Growth Rates. American Society for Testing and Materials (ASTM).
Blaiszik, B.J., Kramer, S.L., Olugebefola,
S.C., Moore, J.S., Sottos, N.R. & White, S.R.
2010. Self-healing polymers and composites. Annual
Review of Materials Research 40: 179-211.
Bode, T.A. 2012. An analysis of the impacts of
temperature segregation on hot mix asphalt. University
of Nebraska-Lincoln. MS Thesis (Unpublished).
Chuo
T.W. & Liu, Y.L. 2013. Self-healing polymers based on thermally reversible
Diels-Alder chemistry. Polymer Chemistry 4(7): 2194-2205.
Cui, S., Blackman, B.R., Kinloch, A.J. & Taylor, A.C.
2014. Durability of asphalt mixtures: Effect of aggregate type and adhesion
promoters. International Journal of Adhesion and Adhesives 54:
100-111.
Garcia, S.J. 2014. Effect of polymer architecture on
the intrinsic self-healing character of polymers. European Polymer Journal 53: 118-125.
Garcia, A., Schlangen, E.
& Van de Ven, M. 2010. Two ways of closing cracks
on asphalt concrete pavements: Microcapsules and induction heating. Key Engineering Materials 417: 573-576.
Hashemian, L., Kavussi, A. & Aboalmaali,
H.H. 2014. Application of foam bitumen in cold recycling and hydrated lime in
airport pavement strengthening. Case Studies in Construction Materials 1:
164-171.
Herbst, F., Döhler, D., Michael, P. & Binder, W.H. 2013.
Self-healing polymers via supramolecular forces. Macromolecular Rapid
Communications 34(3): 203-220.
Huan, Y., Jitsangiam, P. & Nikraz, H. 2011. Effects of active filler selection on
foamed bitumen mixture in Western Australia. Applied Mechanics and Materials 90:
457-465.
Imato, K., Nishihara,
M., Kanehara, T., Amamoto, Y., Takahara,
A. & Otsuka, H. 2012. Self‐healing of chemical gels
cross‐linked by diarylbibenzofuranone‐based
trigger‐free dynamic covalent bonds at room temperature. Angewandte Chemie 51(5): 1138-1142.
Jahromi, S.G., Vossough, S., Andalibizade, B. & Smith, B. 2014. Fatigue and low
temperature fracture in bitumen mastic. Petroleum
Science and Technology 32(3): 267-273.
Lv, D.W., He, J. & Sun, X.L. 2014. Indoor study on road
performance of macromolecule polymer bitumen waterproof and cohesive layer
(PCMA). Advanced Materials Research 912-914: 172-177.
Meure, S., Varley, R.J., Wu, D.Y., Mayo, S., Nairn, K. & Furman, S. 2012. Confirmation of the
healing mechanism in a mendable EMAA-epoxy resin. European Polymer Journal 48(3): 524-531.
Nahar, S.N., Schmets, A.J.M., Scarpas, A. & Schitter, G.
2014. Microstructural changes in bitumen at the onset of crack formation. European Polymer Journal 56: 17-25.
Rapp, G., Tireau, J., Bussiere, P.O., Chenal, J.M., Rousset, F., Chazeau, L., Gardette, J.L. & Therias, S.
2019. Influence of the physical state of a polymer blend on thermal
ageing. Polymer Degradation and Stability 163: 161-173.
Rubinstein, A., Moradov, D., Shifrin, H., Harel, E.,
Nadler-Milbauer, M., Weinstock, M. & Srebnik, M. 2015. The
anti-inflammatory activity of a novel fused-cyclopentenone phosphonate and its potential in the local treatment of experimental colitis.
gastroenterology research and practice. Gastroenterol. Res. Pract. 2015:
Article ID. 939483.
Smith, B., Jahromi, S.G., Vossough, S. & Andalibizade,
B. 2014. Fatigue and low temperature fracture in bitumen mastic. Petroleum Science and Technology 32(3):
267-273.
White,
S.R., Sottos, N.R., Geubelle,
P.H., Moore, J.S. & Kessler, M.R. 2001. Autonomic healing of polymer
composite. Nature Research Journal 409: 794-797.
Yang, P., Cong, Q. & Liao, K. 2003. Application of
solubility parameter theory in evaluating the aging resistance of paving
asphalts. Petroleum Science and
Technology 21(11-12): 1843-1850.
Yuanita, E., Hendrasetyawan, B.E., Firdaus,
D.F. & Chalid, M. 2017. Improvement of
polypropylene (PP)-modified bitumen through lignin addition. IOP Conference
Series: Materials Science and Engineering 223: 012028.
Zhang, P. & Li, G. 2016. Advances in healing-on-demand
polymers and polymer composites. Progress in Polymer Science 57:
32-63.
Zheng, Z., Du, P., Liu, X., Wang, X., Joncheray,
T. & Zhang, Y. 2013. Synthesis and
characterization of linear self-healing
polyurethane based on thermally reversible diels-alder
reaction. RSC Advances 3(35): 15475-15482.
*Corresponding author; email:
wan.naqiuddin94@gmail.com
|