Sains Malaysiana 50(11)(2021): 3373-3382

http://doi.org/10.17576/jsm-2021-5011-21

 

 

Preparation of Nano-Iron Loaded Cassava Fibre Composite Material for Hexavalent Chromium Removal

(Penyediaan Bahan Komposit Serabut Ubi Kayu Terisi Nanozarah Besi untuk Penyingkiran Kromium Heksavalen)

 

HAOBIN SHI1, WENBIN ZHANG2, FENG CHEN2, QINGSHENG SHI3, FEI CHEN1, LI FU1* & SHICHAO ZHAO1

 

1College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P.R. China

 

2Xinchang Bureau of Agriculture and Rural Affairs, Shaoxing, 312500, P.R. China

 

3Zhehua Xinnong (Jia Xing) Biotechnological Co., Ltd., P.R. China

 

Received: 25 January 2021/Accepted: 4 March 2021

 

ABSTRACT

Waste cassava fiber and tea polyphenols were used as carrier materials and reducing agents, respectively, to prepare nano-iron loaded cassava fiber composite (CF-FeNPs). This work investigated the factors affecting the removal of Cr(Ⅵ) by CF-FeNPs under different environmental conditions and the removal mechanism. The SEM characterization results show that as the initial Fe2+ concentration increases, the amount of nano-iron on the surface of the composite material increases. The results show that the increases of the initial Fe2+ content and dosage of CF-FeNPs can enhance the removal rate. Meanwhile, the decrease of the initial concentration of Cr(Ⅵ) solution and pH also beneficial for the removal performance. When pH=2.0 and the initial concentration of Cr(Ⅵ) is 10 mg/L, the removal rate of hexavalent chromium by CF-FeNPs can reach 81.4% within 2 h. The reaction conforms to the pseudo first-order kinetic model. The results of this study can provide technical reference for the remediation and treatment of Cr(VI)-containing wastewater.

 

Keywords: Nanocomposite; pollution control; removal mechanism; tea polyphenols; wastewater

 

ABSTRAK

Sisa serabut ubi kayu dan polifenol telah digunakan sebagai bahan pembawa dan agen penurun masing-masing untuk menghasilkan komposit serabut ubi kayu terisi nanozarah besi (CF-FeNPs). Penyelidikan ini mengkaji faktor yang mempengaruhi penyingkiran ion Cr(VI) oleh CF-FeNPs) pada keadaan persekitaran yang berbeza serta mekanisme penyingkiran. Pencirian menggunakan SEM menunjukkan bahawa peningkatan kepekatan Fe2+ telah meningkatkan kandungan nanozarah besi yang terbentuk pada permukaan komposit. Keputusan menunjukkan bahawa peningkatan kepekatan Fe2+ telah meningkatkan kadar penyingkiran Cr(VI). Pada pH=2.0 dan kepekatan awal Cr(VI) 10 mg/L, penyingkiran Cr(VI) boleh mencapai setinggi 81.4% dalam masa 2 jam. Tindak balas ini berpadanan dengan model kinetik tertib pertama pseudo. Keputusan kajian ini boleh menjadi rujukan teknikal bagi kajian rawatan air buangan yang mengandungi Cr(VI).

 

Kata kunci: Air buangan; kawalan pencemaran; komposit nano; mekanisme penyingkiran; polifenol teh

 

REFERENCES

Bae, S., Gim, S., Kim, H. & Khalil, H. 2016. Effect of NaBH4 on properties of nanoscale zero-valent iron and its catalytic activity for reduction of p-nitrophenol. Applied Catalysis B: Environmental 182: 541-549.

Banerjee, M., Basu, R.K. & Das, S.K. 2018. Cr (VI) adsorption by a green adsorbent walnut shell: Adsorption studies, regeneration studies, scale-up design and economic feasibility. Process Safety and Environmental Protection 116: 693-702.

Batool, R., Kim, Y. & Shahida Hasnain. 2012. Hexavalent chromium reduction by bacteria from tannery effluent. J. Microbiol. Biotechnol. 22(4): 547-554.

Chavan, R.R., Bhinge, S.D., Bhutkar, M.A., Randive, D.S., Wadkar, G.H., Todkar, S.S. & Urade, M.N. 2020. Characterization, antioxidant, antimicrobial and cytotoxic activities of green synthesized silver and iron nanoparticles using alcoholic Blumea eriantha DC plant extract. Materials Today Communications 24: 101320.

Chen, A., Shang, C., Shao, J., Zhang, J. & Huang, H. 2017. The application of iron-based technologies in uranium remediation: A review. Science of The Total Environment 575: 1291-1306.

Clementino, M., Shi, X. & Zhang, Z. 2018. Oxidative stress and metabolic reprogramming in Cr (VI) carcinogenesis. Current Opinion in Toxicology 8: 20-27.

Dermentzis, K., Valsamidou, E. & Marmanis, D. 2012. Simultaneous removal of acidity and lead from acid lead battery wastewater by aluminum and iron electrocoagulation. Journal of Engineering Science & Technology Review 5(2): 1-5.

Dong, H., Zeng, Y., Zeng, G., Huang, D., Liang, J., Zhao, F., He, Q., Xie, Y. & Wu, Y. 2016. EDDS-assisted reduction of Cr (VI) by nanoscale zero-valent iron. Separation and Purification Technology 165: 86-91.

Ebrahiminezhad, A., Zare-Hoseinabadi, A., Sarmah, A.K., Taghizadeh, S., Ghasemi, Y. & Berenjian, A. 2018. Plant-mediated synthesis and applications of iron nanoparticles. Molecular Biotechnology 60(2): 154-168.

Fu, F., Ma, J., Xie, L., Tang, B., Han, W. & Lin, S. 2013. Chromium removal using resin supported nanoscale zero-valent iron. Journal of Environmental Management 128: 822-827.

Fu, L., Xie, K., Wang, A., Lyu, F., Ge, J., Zhang, L., Zhang, H., Su, W., Hou, Y.L., Zhou, C., Wang, C. & Ruan, S. 2019. High selective detection of mercury (II) ions by thioether side groups on metal-organic frameworks. Analytica Chimica Acta 1081: 51-58. https://doi.org/10.1016/j.aca.2019.06.055.

Gautam, A., Rawat, S., Verma, L., Singh, J., Sikarwar, S., Yadav, B.C. & Kalamdhad, A.S. 2018. Green synthesis of iron nanoparticle from extract of waste tea: An application for phenol red removal from aqueous solution. Environmental Nanotechnology, Monitoring & Management 10: 377-387.

Ghanim, D., Al-Kindi, G.Y. & Hassan, A.K. 2020. Green synthesis of iron nanoparticles using black tea leaves extract as adsorbent for removing eriochrome blue-black B dye. Engineering and Technology Journal 38(10A): 1558-1569.

Huang, L., Weng, X., Chen, Z., Megharaj, M. & Naidu, R. 2014. Green synthesis of iron nanoparticles by various tea extracts: Comparative study of the reactivity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 130: 295-301.

Janghel, E.K., Rai, M.K., Gupta, V.K. & Rai, J.K. 2007. Trace spectrophotometric determination of dichlorvos using diphenyl semicarbazide (DPC) in environmental and agricultural samples. Journal of the Chinese Chemical Society 54(2): 345-350.

Jing, C., Li, Y.L. & Landsberger, S. 2016. Review of soluble uranium removal by nanoscale zero valent iron. Journal of Environmental Radioactivity 164: 65-72.

Kalidhasan, S., Krishna Kumar, A.S., Rajesh, V. & Rajesh, N. 2013. Enhanced adsorption of hexavalent chromium arising out of an admirable interaction between a synthetic polymer and an ionic liquid. Chemical Engineering Journal 222: 454-463.

Karimi-Maleh, H., Alizadeh, M., Orooji, Y., Karimi, F., Baghayeri, M., Rouhi, J., Tajik, S., Beitollahi, H., Agarwal, S.,  Gupta, V.K., Rajendran, S., Rostamnia, S.,  Fu, L., Saberi-Movahed, F. & Malekmohammadi, S. 2021a. Guanine-based DNA biosensor amplified with Pt/SWCNTs nanocomposite as analytical tool for nanomolar determination of daunorubicin as an anticancer drug: A docking/experimental investigation. Industrial & Engineering Chemistry Research 60(2): 816-823. https://doi.org/10.1021/acs.iecr.0c04698.

Karimi-Maleh, H., Ayati, A., Davoodi, R., Tanhaei, B., Karimi, F., Malekmohammadi, S., Orooji, Y., Fu, L. & Sillanpää, M. 2021b. Recent advances in using of chitosan-based adsorbents for removal of pharmaceutical contaminants: A review. Journal of Cleaner Production 291: 125880. https://doi.org/10.1016/j.jclepro.2021.125880.

Karimi-Maleh, H., Orooji, Y., Ayati, A., Qanbari, S., Tanhaei, B., Karimi, F., Alizadeh, M., Rouhi, J., Fu, L. & Sillanpää, M. 2020. Recent advances in removal techniques of Cr(VI) toxic ion from aqueous solution: A comprehensive review. Journal of Molecular Liquids 2020: 115062. https://doi.org/10.1016/j.molliq.2020.115062.

Koushkbaghi, S., Zakialamdari, A., Pishnamazi, M., Ramandi, H.F., Aliabadi, M. & Irani, M. 2018. Aminated-Fe3O4 nanoparticles filled chitosan/PVA/PES dual layers nanofibrous membrane for the removal of Cr (VI) and Pb (II) ions from aqueous solutions in adsorption and membrane processes. Chemical Engineering Journal 337: 169-182.

Kumar, R., Anupama, A.V., Kumaran, V. & Sahoo, B. 2018. Effect of solvents on the structure and magnetic properties of pyrolysis derived carbon globules embedded with iron/iron carbide nanoparticles and their applications in magnetorheological fluids. Nano-Structures & Nano-Objects 16: 167-173.

Machado, S., Pinto, S.L., Grosso, J.P., Nouws, H.P.A., Albergaria, J.T. & Delerue-Matos, C. 2013. Green production of zero-valent iron nanoparticles using tree leaf extracts. Science of The Total Environment 445: 1-8.

Mashayekhi, F., Shafiekhani, A., Ali Sebt, S. & Darabi, E. 2018. The effect of initial pressure on growth of FeNPs in amorphous carbon films. International Nano Letters 8(1): 25-30.

Mehrotra, N., Tripathi, R.M., Zafar, F. & Singh, M.P. 2017. Catalytic degradation of dichlorvos using biosynthesized zero valent iron nanoparticles. IEEE Transactions on Nanobioscience 16(4): 280-286.

Mohan, D. & Pittman Jr. C.U. 2006. Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. Journal of Hazardous Materials 137(2): 762-811.

Patel, D., Vithalani, R. & Modi, C.K. 2020. Highly efficient FeNP-embedded hybrid bifunctional reduced graphene oxide for knoevenagel condensation with active methylene compounds. New Journal of Chemistry 44(7): 2868-2881.

Paunovic, J., Vucevic, D., Radosavljevic, T., Mandić-Rajčević, S. & Pantic, I. 2020. Iron-based nanoparticles and their potential toxicity: Focus on oxidative stress and apoptosis. Chemico-Biological Interactions 316: 108935.

Plachtová, P., Medrikova, Z., Zboril, R., Tucek, J., Varma, R.S. & Maršálek, B. 2018. Iron and iron oxide nanoparticles synthesized with green tea extract: Differences in ecotoxicological profile and ability to degrade malachite green. ACS Sustainable Chemistry & Engineering 6(7): 8679-8687.

Qian, A., Liao, P., Yuan, S. & Luo, M. 2014. Efficient reduction of Cr (VI) in groundwater by a hybrid electro-Pd process. Water Research 48: 326-334.

Shalaby, A.A. & Mohamed, A.A. 2020. Sensitive assessment of hexavalent chromium using various uniform and non-uniform color space signals derived from digital images. Water, Air, & Soil Pollution 231(10): 1-10.

Sun, Q., Hu, X., Zheng, S., Zhang, J. & Sheng, J. 2019. Effect of calcination on structure and photocatalytic property of N-TiO2/g-C3N4@ diatomite hybrid photocatalyst for improving reduction of Cr (Ⅵ)’. Environmental Pollution 245: 53-62.

Wang, Q., Huang, L., Pan, Y., Quan, X. & Puma, G.L. 2017. Impact of Fe (III) as an effective electron-shuttle mediator for enhanced Cr (VI) reduction in microbial fuel cells: Reduction of diffusional resistances and cathode overpotentials. Journal of Hazardous Materials 321: 896-906.

Wang, T., Jin, X., Chen, Z., Megharaj, M. & Naidu, R. 2014. Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Science of The Total Environment 466: 210-213.

Wang, W., Hu, B., Wang, C., Liang, Z., Cui, F., Zhao, Z. & Yang, C. 2020. ‘Cr (VI) removal by micron-scale iron-carbon composite induced by ball milling: The role of activated carbon. Chemical Engineering Journal 389: 122633.

Wei, S., Li, D., Huang, Z., Huang, Y. & Wang, F. 2013. High-capacity adsorption of Cr (VI) from aqueous solution using a hierarchical porous carbon obtained from pig bone. Bioresource Technology 134: 407-411.

Wei, Y., Fang, Z., Zheng, L. & Tsang, E.P. 2017. Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal. Applied Surface Science 399: 322-329.

Xu, Y., Lu, Y., Zhang, P., Wang, Y., Zheng, Y., Fu, L., Zhang, H., Lin, C-T. & Yu, A. 2020. Infrageneric phylogenetics investigation of chimonanthus based on electroactive compound profiles. Bioelectrochemistry 133: 107455. https://doi.org/10.1016/j.bioelechem.2020.107455.

Yin, Z., Liu, W., Bao, M. & Li, Y. 2021. Magnetic chitosan‐based aerogel decorated with polydimethylsiloxane: A high‐performance scavenger for oil in water. Journal of Applied Polymer Science 2021: 50461.

Ying, J., Zheng, Y., Zhang, H. & Fu, L. 2020. Room temperature biosynthesis of gold nanoparticles with Lycoris aurea leaf extract for the electrochemical determination of aspirin. Revista Mexicana de Ingeniería Química 19(2): 585-592.

Zeng, Q., Hu, Y., Yang, Y., Hu, L., Zhong, H. & He, Z. 2019. Cell envelop is the key site for Cr (Ⅵ) reduction by Oceanobacillus oncorhynchi W4, a newly isolated Cr (Ⅵ) reducing bacterium. Journal of Hazardous Materials 368: 149-155.

Zhang, H-Y., Wang, Y., Xiao, S., Wang, H., Wang, J-H. & Feng, L. 2017. Rapid detection of Cr (VI) ions based on cobalt (II)-doped carbon dots. Biosensors and Bioelectronics 87: 46-52.

Zhang, M., Pan, B., Wang, Y., Du, X., Fu, L., Zheng, Y., Chen, F., Wu, W., Zhou, Q. & Ding, S. 2020. Recording the electrochemical profile of Pueraria leaves for polyphyly analysis. ChemistrySelect 5(17): 5035-5040.

Zhang, X., Yang, R., Li, Z., Zhang, M., Wang, Q., Xu, Y., Fu, L., Du, J., Zheng, Y. & Zhu, J. 2020. Electroanalytical study of infrageneric relationship of Lagerstroemia using glassy carbon electrode recorded voltammograms. Revista Mexicana de Ingeniería Química 19(Sup. 1): 281-291.

Zhou, J., Zheng, Y., Zhang, J., Karimi-Maleh, H., Xu, Y., Zhou, Q., Fu, L. & Wu, W. 2020. Characterization of the electrochemical profiles of Lycoris seeds for species identification and infrageneric relationships. Analytical Letters 53(15): 2517-2528. https://doi.org/10.1080/00032719.2020.1746327.

 

*Corresponding author; email: fuli@hdu.edu.cn

 

 

 

 

previous