Sains Malaysiana
50(11)(2021): 3373-3382
http://doi.org/10.17576/jsm-2021-5011-21
Preparation of Nano-Iron Loaded Cassava Fibre Composite
Material for Hexavalent Chromium Removal
(Penyediaan Bahan Komposit Serabut Ubi Kayu Terisi Nanozarah
Besi untuk Penyingkiran Kromium Heksavalen)
HAOBIN SHI1, WENBIN ZHANG2, FENG CHEN2,
QINGSHENG SHI3, FEI CHEN1, LI FU1* &
SHICHAO ZHAO1
1College of Materials and
Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P.R.
China
2Xinchang Bureau of Agriculture and Rural Affairs, Shaoxing,
312500, P.R. China
3Zhehua Xinnong (Jia Xing) Biotechnological Co., Ltd., P.R.
China
Received: 25 January 2021/Accepted: 4 March 2021
ABSTRACT
Waste cassava fiber and tea polyphenols were used as carrier
materials and reducing agents, respectively, to prepare nano-iron loaded
cassava fiber composite (CF-FeNPs). This work investigated the factors
affecting the removal of Cr(Ⅵ) by CF-FeNPs under different environmental
conditions and the removal mechanism. The SEM characterization results show
that as the initial Fe2+ concentration increases, the amount of
nano-iron on the surface of the composite material increases. The results show
that the increases of the initial Fe2+ content and dosage of
CF-FeNPs can enhance the removal rate. Meanwhile, the decrease of the initial
concentration of Cr(Ⅵ) solution and pH also beneficial for the removal
performance. When pH=2.0 and the initial concentration of Cr(Ⅵ) is 10
mg/L, the removal rate of hexavalent chromium by CF-FeNPs can reach 81.4%
within 2 h. The reaction conforms to the pseudo first-order kinetic model. The
results of this study can provide technical reference for the remediation and
treatment of Cr(VI)-containing wastewater.
Keywords: Nanocomposite; pollution control; removal
mechanism; tea polyphenols; wastewater
ABSTRAK
Sisa serabut ubi kayu dan polifenol telah digunakan sebagai
bahan pembawa dan agen penurun masing-masing untuk menghasilkan komposit
serabut ubi kayu terisi nanozarah besi (CF-FeNPs). Penyelidikan ini mengkaji
faktor yang mempengaruhi penyingkiran ion Cr(VI) oleh CF-FeNPs) pada keadaan
persekitaran yang berbeza serta mekanisme penyingkiran. Pencirian menggunakan
SEM menunjukkan bahawa peningkatan kepekatan Fe2+ telah meningkatkan
kandungan nanozarah besi yang terbentuk pada permukaan komposit. Keputusan
menunjukkan bahawa peningkatan kepekatan Fe2+ telah meningkatkan
kadar penyingkiran Cr(VI). Pada pH=2.0 dan kepekatan awal Cr(VI) 10 mg/L,
penyingkiran Cr(VI) boleh mencapai setinggi 81.4% dalam masa 2 jam. Tindak
balas ini berpadanan dengan model kinetik tertib pertama pseudo. Keputusan
kajian ini boleh menjadi rujukan teknikal bagi kajian rawatan air buangan yang
mengandungi Cr(VI).
Kata kunci: Air buangan; kawalan pencemaran; komposit nano;
mekanisme penyingkiran; polifenol teh
REFERENCES
Bae, S., Gim, S., Kim,
H. & Khalil, H. 2016. Effect of NaBH4 on properties of nanoscale
zero-valent iron and its catalytic activity for reduction of p-nitrophenol. Applied Catalysis B: Environmental 182:
541-549.
Banerjee, M., Basu, R.K.
& Das, S.K. 2018. Cr (VI) adsorption by a green adsorbent walnut shell:
Adsorption studies, regeneration studies, scale-up design and economic
feasibility. Process Safety and
Environmental Protection 116: 693-702.
Batool, R., Kim, Y.
& Shahida Hasnain. 2012. Hexavalent chromium reduction by bacteria from
tannery effluent. J. Microbiol.
Biotechnol. 22(4): 547-554.
Chavan, R.R., Bhinge,
S.D., Bhutkar, M.A., Randive, D.S., Wadkar, G.H., Todkar, S.S. & Urade,
M.N. 2020. Characterization, antioxidant, antimicrobial and cytotoxic
activities of green synthesized silver and iron nanoparticles using alcoholic Blumea eriantha DC plant extract. Materials Today Communications 24:
101320.
Chen, A., Shang, C.,
Shao, J., Zhang, J. & Huang, H. 2017. The application of iron-based
technologies in uranium remediation: A review. Science of The Total Environment 575: 1291-1306.
Clementino, M., Shi, X.
& Zhang, Z. 2018. Oxidative stress and metabolic reprogramming in Cr (VI)
carcinogenesis. Current Opinion in
Toxicology 8: 20-27.
Dermentzis, K.,
Valsamidou, E. & Marmanis, D. 2012. Simultaneous removal of acidity and
lead from acid lead battery wastewater by aluminum and iron electrocoagulation. Journal of Engineering Science &
Technology Review 5(2): 1-5.
Dong, H., Zeng, Y.,
Zeng, G., Huang, D., Liang, J., Zhao, F., He, Q., Xie, Y. & Wu, Y. 2016.
EDDS-assisted reduction of Cr (VI) by nanoscale zero-valent iron. Separation and Purification Technology 165: 86-91.
Ebrahiminezhad, A.,
Zare-Hoseinabadi, A., Sarmah, A.K., Taghizadeh, S., Ghasemi, Y. &
Berenjian, A. 2018. Plant-mediated synthesis and applications of iron
nanoparticles. Molecular Biotechnology 60(2): 154-168.
Fu, F., Ma, J., Xie, L.,
Tang, B., Han, W. & Lin, S. 2013. Chromium removal using resin supported
nanoscale zero-valent iron. Journal of
Environmental Management 128: 822-827.
Fu, L., Xie, K., Wang,
A., Lyu, F., Ge, J., Zhang, L., Zhang, H., Su, W., Hou, Y.L., Zhou, C., Wang,
C. & Ruan, S. 2019. High selective detection of mercury (II) ions by thioether
side groups on metal-organic frameworks. Analytica
Chimica Acta 1081: 51-58. https://doi.org/10.1016/j.aca.2019.06.055.
Gautam, A., Rawat, S.,
Verma, L., Singh, J., Sikarwar, S., Yadav, B.C. & Kalamdhad, A.S. 2018.
Green synthesis of iron nanoparticle from extract of waste tea: An application
for phenol red removal from aqueous solution. Environmental Nanotechnology, Monitoring & Management 10:
377-387.
Ghanim, D., Al-Kindi,
G.Y. & Hassan, A.K. 2020. Green synthesis of iron nanoparticles using black
tea leaves extract as adsorbent for removing eriochrome blue-black B dye. Engineering and Technology Journal 38(10A): 1558-1569.
Huang, L., Weng, X.,
Chen, Z., Megharaj, M. & Naidu, R. 2014. Green synthesis of iron
nanoparticles by various tea extracts: Comparative study of the reactivity. Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy 130: 295-301.
Janghel, E.K., Rai,
M.K., Gupta, V.K. & Rai, J.K. 2007. Trace spectrophotometric determination
of dichlorvos using diphenyl semicarbazide (DPC) in environmental and
agricultural samples. Journal of the
Chinese Chemical Society 54(2): 345-350.
Jing, C., Li, Y.L. &
Landsberger, S. 2016. Review of soluble uranium removal by nanoscale zero
valent iron. Journal of Environmental
Radioactivity 164: 65-72.
Kalidhasan, S., Krishna
Kumar, A.S., Rajesh, V. & Rajesh, N. 2013. Enhanced adsorption of
hexavalent chromium arising out of an admirable interaction between a synthetic
polymer and an ionic liquid. Chemical
Engineering Journal 222: 454-463.
Karimi-Maleh, H.,
Alizadeh, M., Orooji, Y., Karimi, F., Baghayeri, M., Rouhi, J., Tajik, S.,
Beitollahi, H., Agarwal, S., Gupta, V.K., Rajendran, S., Rostamnia, S., Fu, L., Saberi-Movahed, F. & Malekmohammadi, S. 2021a.
Guanine-based DNA biosensor amplified with Pt/SWCNTs nanocomposite as
analytical tool for nanomolar determination of daunorubicin as an anticancer
drug: A docking/experimental investigation. Industrial
& Engineering Chemistry Research 60(2): 816-823.
https://doi.org/10.1021/acs.iecr.0c04698.
Karimi-Maleh, H., Ayati,
A., Davoodi, R., Tanhaei, B., Karimi, F., Malekmohammadi, S., Orooji, Y., Fu,
L. & Sillanpää, M. 2021b. Recent advances in using of chitosan-based
adsorbents for removal of pharmaceutical contaminants: A review. Journal of Cleaner Production 291:
125880. https://doi.org/10.1016/j.jclepro.2021.125880.
Karimi-Maleh, H.,
Orooji, Y., Ayati, A., Qanbari, S., Tanhaei, B., Karimi, F., Alizadeh, M.,
Rouhi, J., Fu, L. & Sillanpää, M. 2020. Recent advances in removal
techniques of Cr(VI) toxic ion from aqueous solution: A comprehensive review. Journal of Molecular Liquids 2020:
115062. https://doi.org/10.1016/j.molliq.2020.115062.
Koushkbaghi, S.,
Zakialamdari, A., Pishnamazi, M., Ramandi, H.F., Aliabadi, M. & Irani, M.
2018. Aminated-Fe3O4 nanoparticles filled chitosan/PVA/PES dual layers
nanofibrous membrane for the removal of Cr (VI) and Pb (II) ions from aqueous
solutions in adsorption and membrane processes. Chemical Engineering Journal 337: 169-182.
Kumar, R., Anupama,
A.V., Kumaran, V. & Sahoo, B. 2018. Effect of solvents on the structure and
magnetic properties of pyrolysis derived carbon globules embedded with
iron/iron carbide nanoparticles and their applications in magnetorheological
fluids. Nano-Structures & Nano-Objects 16: 167-173.
Machado, S., Pinto,
S.L., Grosso, J.P., Nouws, H.P.A., Albergaria, J.T. & Delerue-Matos, C.
2013. Green production of zero-valent iron nanoparticles using tree leaf
extracts. Science of The Total
Environment 445: 1-8.
Mashayekhi, F., Shafiekhani,
A., Ali Sebt, S. & Darabi, E. 2018. The effect of initial pressure on
growth of FeNPs in amorphous carbon films. International
Nano Letters 8(1): 25-30.
Mehrotra, N., Tripathi,
R.M., Zafar, F. & Singh, M.P. 2017. Catalytic degradation of dichlorvos using
biosynthesized zero valent iron nanoparticles. IEEE Transactions on Nanobioscience 16(4): 280-286.
Mohan, D. & Pittman
Jr. C.U. 2006. Activated carbons and low cost adsorbents for remediation of
tri-and hexavalent chromium from water. Journal
of Hazardous Materials 137(2): 762-811.
Patel, D., Vithalani, R.
& Modi, C.K. 2020. Highly efficient FeNP-embedded hybrid bifunctional
reduced graphene oxide for knoevenagel condensation with active methylene
compounds. New Journal of Chemistry 44(7): 2868-2881.
Paunovic, J., Vucevic,
D., Radosavljevic, T., Mandić-Rajčević, S. & Pantic, I.
2020. Iron-based nanoparticles and their potential toxicity: Focus on oxidative
stress and apoptosis. Chemico-Biological
Interactions 316: 108935.
Plachtová, P.,
Medrikova, Z., Zboril, R., Tucek, J., Varma, R.S. & Maršálek, B. 2018. Iron
and iron oxide nanoparticles synthesized with green tea extract: Differences in
ecotoxicological profile and ability to degrade malachite green. ACS Sustainable Chemistry & Engineering 6(7): 8679-8687.
Qian, A., Liao, P.,
Yuan, S. & Luo, M. 2014. Efficient reduction of Cr (VI) in groundwater by a
hybrid electro-Pd process. Water Research 48: 326-334.
Shalaby, A.A. &
Mohamed, A.A. 2020. Sensitive assessment of hexavalent chromium using various uniform
and non-uniform color space signals derived from digital images. Water, Air, & Soil Pollution 231(10): 1-10.
Sun, Q., Hu, X., Zheng,
S., Zhang, J. & Sheng, J. 2019. Effect of calcination on structure and
photocatalytic property of N-TiO2/g-C3N4@ diatomite hybrid photocatalyst for
improving reduction of Cr (Ⅵ)’. Environmental
Pollution 245: 53-62.
Wang, Q., Huang, L.,
Pan, Y., Quan, X. & Puma, G.L. 2017. Impact of Fe (III) as an effective
electron-shuttle mediator for enhanced Cr (VI) reduction in microbial fuel
cells: Reduction of diffusional resistances and cathode overpotentials. Journal of Hazardous Materials 321:
896-906.
Wang, T., Jin, X., Chen,
Z., Megharaj, M. & Naidu, R. 2014. Green synthesis of Fe nanoparticles
using eucalyptus leaf extracts for treatment of eutrophic wastewater. Science of The Total Environment 466:
210-213.
Wang, W., Hu, B., Wang,
C., Liang, Z., Cui, F., Zhao, Z. & Yang, C. 2020. ‘Cr (VI) removal by
micron-scale iron-carbon composite induced by ball milling: The role of activated
carbon. Chemical Engineering Journal 389: 122633.
Wei, S., Li, D., Huang,
Z., Huang, Y. & Wang, F. 2013. High-capacity adsorption of Cr (VI) from
aqueous solution using a hierarchical porous carbon obtained from pig bone. Bioresource Technology 134: 407-411.
Wei, Y., Fang, Z.,
Zheng, L. & Tsang, E.P. 2017. Biosynthesized iron nanoparticles in aqueous
extracts of Eichhornia crassipes and
its mechanism in the hexavalent chromium removal. Applied Surface Science 399: 322-329.
Xu, Y., Lu, Y., Zhang,
P., Wang, Y., Zheng, Y., Fu, L., Zhang, H., Lin, C-T. & Yu, A. 2020.
Infrageneric phylogenetics investigation of chimonanthus based on electroactive
compound profiles. Bioelectrochemistry 133: 107455. https://doi.org/10.1016/j.bioelechem.2020.107455.
Yin, Z., Liu, W., Bao,
M. & Li, Y. 2021. Magnetic chitosan‐based aerogel decorated with
polydimethylsiloxane: A high‐performance scavenger for oil in water. Journal of Applied Polymer Science 2021:
50461.
Ying, J., Zheng, Y.,
Zhang, H. & Fu, L. 2020. Room temperature biosynthesis of gold
nanoparticles with Lycoris aurea leaf
extract for the electrochemical determination of aspirin. Revista Mexicana de Ingeniería Química 19(2): 585-592.
Zeng, Q., Hu, Y., Yang,
Y., Hu, L., Zhong, H. & He, Z. 2019. Cell envelop is the key site for Cr
(Ⅵ) reduction by Oceanobacillus
oncorhynchi W4, a newly isolated Cr (Ⅵ) reducing bacterium. Journal of Hazardous Materials 368:
149-155.
Zhang, H-Y., Wang, Y.,
Xiao, S., Wang, H., Wang, J-H. & Feng, L. 2017. Rapid detection of Cr (VI)
ions based on cobalt (II)-doped carbon dots. Biosensors and Bioelectronics 87: 46-52.
Zhang, M., Pan, B.,
Wang, Y., Du, X., Fu, L., Zheng, Y., Chen, F., Wu, W., Zhou, Q. & Ding, S.
2020. Recording the electrochemical profile of Pueraria leaves for polyphyly analysis. ChemistrySelect 5(17): 5035-5040.
Zhang, X., Yang, R., Li,
Z., Zhang, M., Wang, Q., Xu, Y., Fu, L., Du, J., Zheng, Y. & Zhu, J. 2020.
Electroanalytical study of infrageneric relationship of Lagerstroemia using glassy carbon electrode recorded voltammograms. Revista Mexicana de Ingeniería Química 19(Sup. 1): 281-291.
Zhou, J., Zheng, Y.,
Zhang, J., Karimi-Maleh, H., Xu, Y., Zhou, Q., Fu, L. & Wu, W. 2020.
Characterization of the electrochemical profiles of Lycoris seeds for species identification and infrageneric
relationships. Analytical Letters 53(15): 2517-2528. https://doi.org/10.1080/00032719.2020.1746327.
*Corresponding author; email:
fuli@hdu.edu.cn
|