Sains Malaysiana 50(12)(2021): 3705-3717

http://doi.org/10.17576/jsm-2021-5012-20

 

Carbonization of Coconut Shell Biomass in a Downdraft Reactor: Effect of Temperature on the Charcoal Properties

(Pengkarbonan Biojisim Tempurung Kelapa dalam Reaktor Alir Turun: Kesan Suhu terhadap Sifat Arang)

 

RABI KABIR AHMAD1,2* & SHAHARIN ANWAR SULAIMAN1

 

1Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia

 

2Department of Agricultural and Environmental Engineering, Bayero University Kano, 3011 Kano, Nigeria

 

Received: 14 January 2021/Accepted: 18 March 2021

 

ABSTRACT

Considering the value of coconut shell biomass as renewable fuels in homes and commercial industries, its effectiveness as a biomass resource has been overlooked by our rural citizens and researchers. Carbonization experiments of coconut shell biomass were conducted in a downdraft carbonization reactor (750 mm height and 67 mm diameter) to determine the effect of temperature (250 to 600 °C, in 50 °C intervals) on the charcoal properties. This was to address the problems of traditional charcoal production methods that include; low yield, environmental pollution, unregulated temperature, and poor quality properties. Yet the scarcity of this information hampers efforts for efficient commercial production. The coconut shell biomass was obtained from a local shop in Malaysia. It was heated in the reactor at a fixed residence time of 60 min and a particle size of 5 mm with nitrogen as a carrier gas. The relationship between temperature and the properties of coconut shell charcoal has been ascertained by the findings of this analysis. The relatively high the temperature, the better the charcoal quality, but the lowest the charcoal yields, since the secondary pyrolysis reaction expends charcoal. It was noted that, up to a final temperature of 500 °C, the yield reduction was rapid; after that, it was slower at 550 °C and almost stable at 600 °C. According to the charcoal’s proximate analysis, the calorific value, fixed carbon content, carbon content and ash content increased with temperature. Whereas, the charcoal density, volatile matter, moisture content, and conversion efficiencies decrease with temperature. The presence of nitrogen gas appears to have reduced combustion reactions that promote the formation of carbon dioxide (CO2). The methods produce the least amount of air pollutants (96 g carbon monoxide (CO), 167 g CO2, and 64 g methane (CH4) per 1 kg of charcoal production). The type of biomass and carbonization kiln has an impact on the production of CO, CO2, and CH4. Thus, the carbonization reactor used in this study has the potentials to produce an eco-friendly charcoal with superior quality properties that can assist in reducing environmental pollution, by proper selections of carbonization temperature.

 

Keywords: Charcoal; coconut shell biomass; downdraft reactor; renewable energy; slow pyrolysis; temperature

 

ABSTRAK

Nilai biojisim tempurung kelapa sebagai bahan bakar yang boleh diperbaharui di rumah dan industri komersial boleh dipertimbangkan, keberkesanan bahan bakar sebagai sumber biojisim ini telah diabaikan oleh masyarakat dan para penyelidik. Kajian tentang proses terhadap biojisim tempurung kelapa dilakukan dalam reaktor alir turun pengkarbonan (ketinggian 750 mm dan diameter 67 mm) untuk menentukan kesan suhu (250 hingga 600 °C, dengan selang 50 °C) pada sifat arang. Kajian ini adalah untuk mengatasi masalah penggunaan kaedah penghasilan arang secara tradisi yang meliputi: hasil rendah, pencemaran alam sekitar, suhu tidak terkawal dan sifat arang yang berkualiti rendah. Namun kekurangan maklumat ini menghalang usaha pengeluaran komersial yang cekap. Biojisim tempurung kelapa diperoleh dari sebuah kedai tempatan di Malaysia. Ia dipanaskan di reaktor pada masa mastautin selama 60 min dan ukuran zarah 5 mm dengan nitrogen sebagai gas pembawa. Hubungan antara suhu dan sifat arang tempurung kelapa telah ditentukan daripada penemuan analisis kajian ini. Secara relatif, semakin tinggi suhu semakin baik kualiti arang, tetapi arang yang dihasilkan adalah sedikit, ini kerana reaksi pirolisis sekunder mengembangkan arang. Telah diperhatikan bahawa, hingga suhu akhir 500 °C, jmlah penurunan arang adalah cepat; selepas itu, ia menjadi perlahan apabila suhu pada 550 °C dan hampir stabil pada 600 °C. Menurut analisis proksimat arang, nilai kalori, kandungan karbon tetap, kandungan karbon dan kandungan abu meningkat dengan suhu. Manakala kepadatan arang, bahan mudah meruap, kandungan kelembapan dan kecekapan penukaran menurun dengan suhu. Kehadiran gas nitrogen menunjukkan pengurangan tindak balas pembakaran yang mendorong pembentukan karbon dioksida (CO2). Kaedah yang menghasilkan jumlah pencemaran udara paling sedikit (96 g karbon monoksida (CO), 167 g CO2 dan 64 g metana (CH4) setiap 1 kg penghasilan arang). Jenis biojisim dan tanur pengkarbonan memberi kesan terhadap pengeluaran CO, CO2 dan CH4. Oleh itu, reaktor pengkarbonan yang digunakan dalam kajian ini berpotensi untuk menghasilkan arang mesra alam dengan sifat kualiti yang lebih tinggi serta dapat membantu mengurangkan pencemaran alam sekitar dengan pemilihan suhu pengkarbonan yang tepat.

 

Kata kunci: Arang; biojisim tempurung kelapa; pirolisis perlahan; reaktor alir turun; suhu; tenaga yang boleh diperbaharui

 

REFERENCES

Ahmad, M.S., Mehmood, M.A., Taqvi, S.T.H., Elkamel, A., Liu, C.G., Xu, J., Rahimuddin, S.A. & Gull, M. 2017. Pyrolysis, kinetics analysis, thermodynamics parameters and reaction mechanism of Typha latifolia to evaluate its bioenergy potential. Bioresource Technology 245: 491-501.

Ahmad, R.K., Sulaiman, S.A., Inayat, M. & Umar, H.A. 2020a. The effects of temperature, residence time and particle size on a charcoal produced from coconut shell. In IOP Conference Series: Materials Science and Engineering. IOP. 012005.

Ahmad, R.K., Sulaiman, S.A., Inayat, M. & Umar, H.A. 2020b. Effects of process conditions on calorific value and yield of charcoal produced from pyrolysis of coconut shells. Advances in Manufacturing Engineering, Lecture Notes in Mechanical Engineering, edited by Emamian, S.S., Awang, M. & Yusof, F. Singapore: Springer. pp. 253-262.

Ahmad, R.K., Sulaiman, S.A., Yusuf, S.B., Dol, S.S., Umar, H.A. & Inayat, M. 2020c. The influence of pyrolysis process conditions on the quality of coconut shells charcoal. Platform: A Journal of Engineering 4(1): 73-81.

Antal Jr., M.J., Allen, S.G., Dai, X., Shimizu, B., Tam, M.S. & Grønli, M. 2000. Attainment of the theoretical yield of carbon from biomass. Industrial & Engineering Chemistry Research 39(11): 4024-4031.

ASTM. 2018. Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter. American Society for Testing and Materials (ASTM).

ASTM. 2015. Standard Practice for Ultimate Analysis of Coal and Coke. American Society for Testing and Materials (ASTM).

ASTM. 2014. Standard Test Method for Compositional Analysis by Thermogravimetry. American Society for Testing and Materials (ASTM).

ASTM. 2013. Standard Test Method for Moisture Analysis of Particulate Wood Fuels. American Society for Testing and Materials (ASTM).

Azargohar, R., Nanda, S., Kozinski, J.A., Dalai, A.K. & Sutarto, R. 2014. Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass. Fuel 125: 90-100.

Basu, P. 2010. Biomass Gasification and Pyrolysis: Practical Design and Theory. Massachusetts: Academic Press. pp. 1-377.

Baygan, G.D., Loretero, M. & Manilhig, M. 2019. Coconut shell pyrolysis for optimum charcoal production. In Proceedings of International Conference on Technological Challenges for Better World. ICTCBW. pp. 1-10.

Bhatt, B.P. & Todaria, N.P. 1992. Firewood characteristics of some mountain trees and shrubs. The Commonwealth Forestry Review 71: 183-185.

Chandrasekaran, A., Subbiah, S., Bartocci, P., Yang, H. & Fantozzi, F. 2021. Carbonization using an improved natural draft retort reactor in India: Comparison between the performance of two woody biomasses, Prosopis juliflora and Casuarina equisetifolia. Fuel 285: 119095.

Chandrasekaran, A., Subbiah, S., Ramachandran, S., Narayanasamy, S., Bartocci, P. & Fantozzi, F. 2019. Natural draft-improved carbonization retort system for biocarbon production from Prosopis juliflora biomass. Energy & Fuels 33(11): 11113-11124.

Chen, D., Li, Y., Deng, M., Wang, J., Chen, M., Yan, B. & Yuan, Q. 2016. Effect of torrefaction pretreatment and catalytic pyrolysis on the pyrolysis poly-generation of pine wood. Bioresource Technology 214: 615-622.

Chidumayo, E.N. & Gumbo, D.J. 2013. The environmental impacts of charcoal production in tropical ecosystems of the world: A synthesis. Energy for Sustainable Development 17(2): 86-94.

Demirbas, A., Ahmad, W., Alamoudi, R. & Sheikh, M. 2016. Sustainable charcoal production from biomass. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 38(13): 1882-1889.

The Food and Agriculture Organization (FAO). 2017. The Charcoal Transition: Greening the Charcoal Value Chain to Mitigate Climate Change and Improve Local Livelihoods.

The Food and Agriculture Organization (FAO). 1987. Chapter 10: Using charcoal efficiently. Simple Technologies for Charcoal Making. Food and Agriculture Organization of the United Nations. Rome, Italy:  Forestry Department.

The Food and Agriculture Organization (FAO) 1962. Charcoal for Domestic and Industrial Use.

Foraminifera. 2018. Coconut Chips Production in Nigeria: The Feasibility Report. Foraminifera Market Research Limited. https://foramfera.com/coconut.

Júnior, A.F.D., Esteves, R.P., Da Silva, A.M., Júnior, A.D.S., Oliveira, M.P., Brito, J.O., Napoli, A. & Braga, B.M. 2020. Investigating the pyrolysis temperature to define the use of charcoal. European Journal of Wood and Wood Products 78(1): 193-204.

Kongnine, D.M., Kpelou, P., Attah, N.G., Kombate, S., Mouzou, E., Djeteli, G. & Napo, K. 2020. Energy resource of charcoals derived from some tropical fruits nuts shells. International Journal of Renewable Energy Development 9(1): 29-35.

Pestaño, L.D.B. & Jose, W.I. 2016. Production of solid fuel by torrefaction using coconut leaves as renewable biomass. International Journal of Renewable Energy Development 5(3): 11.

Qin, L., Wu, Y., Hou, Z. & Jiang, E. 2020. Influence of biomass components, temperature and pressure on the pyrolysis behavior and biochar properties of pine nut shells. Bioresource Technology 313: 123682.

Ritchie, H. & Roser, M. 2017. Fossil Fuels. https://ourworldindata.org/.

Ronsse, F., Van Hecke, S., Dickinson, D. & Prins, W. 2013. Production and characterization of slow pyrolysis biochar: Influence of feedstock type and pyrolysis conditions. Bioenergy 5(2): 104-115.

Sari, R.M., Gea, S., Wirjosentono, B., Hendrana, S. & Hutapea, Y.A. 2020. Improving quality and yield production of coconut shell charcoal through a modified pyrolysis reactor with tar scrubber to reduce smoke pollution. Polish Journal of Environmental Studies 29(2): 1815-1824.

Song, H., Liu, G. & Wu, J. 2016. Pyrolysis characteristics and kinetics of low rank coals by distributed activation energy model. Energy Conversion and Management 126: 1037-1046.

Sparrevik, M., Adam, C., Martinsen, V. & Cornelissen, G. 2015. Emissions of gases and particles from charcoal/biochar production in rural areas using medium-sized traditional and improved “retort” kilns. Biomass and Bioenergy 72: 65-73.

Strezov, V., Popovic, E., Filkoski, R.V., Shah, P. & Evans, T. 2017. Assessment of the thermal processing behavior of tobacco waste. Energy & Fuels 26(9): 5930-5935.

Yaman, S. 2004. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion Management 45(5): 651-671.

Yang, H., Huang, L., Liu, S., Sun, K. & Sun, Y. 2016. Pyrolysis process and characteristics of products from sawdust briquettes. BioResources 11(1): 2438-2456.

Yang, X., Kang, K., Qiu, L., Zhao, L. & Sun, R. 2020. Effects of carbonization conditions on the yield and fixed carbon content of biochar from pruned apple tree branches. Renewable Energy 146: 1691-1699.

Yerima, I. & Grema, M.Z. 2018. The potential of coconut shell as biofuel. Journal of Middle East and North Africa Sciences 4(5): 11-15.

Zainab, M., El Hanandeh, A. & Yu, Q.J. 2015. Date palm (Phoenix dactylifera L.) seed characterization for biochar preparation. The 6th International Conference on Engineering, Project, and Production Management. Publons. pp. 130-138.

Zhao, B., O'Connor, D., Zhang, J., Peng, T., Shen, Z., Tsang, D.C. & Hou, D. 2018. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. Journal of Cleaner Production 174: 977-987.

 

*Corresponding author; email: rkahmad.age@buk.edu.ng

 

 

 

 

previous