Sains
Malaysiana 50(12)(2021): 3705-3717
http://doi.org/10.17576/jsm-2021-5012-20
Carbonization
of Coconut Shell Biomass in a Downdraft Reactor: Effect of Temperature on the
Charcoal Properties
(Pengkarbonan
Biojisim Tempurung Kelapa dalam Reaktor Alir Turun: Kesan Suhu terhadap Sifat
Arang)
RABI KABIR AHMAD1,2*
& SHAHARIN ANWAR SULAIMAN1
1Department
of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri
Iskandar, Perak Darul Ridzuan, Malaysia
2Department
of Agricultural and Environmental Engineering, Bayero University Kano, 3011
Kano, Nigeria
Received: 14 January 2021/Accepted:
18 March 2021
ABSTRACT
Considering the value of coconut
shell biomass as renewable fuels in homes and commercial industries, its
effectiveness as a biomass resource has been overlooked by our rural citizens
and researchers. Carbonization experiments of coconut shell biomass were
conducted in a downdraft carbonization reactor (750 mm height and 67 mm
diameter) to determine the effect of temperature (250 to 600 °C, in 50 °C
intervals) on the charcoal properties. This was to address the problems of
traditional charcoal production methods that include; low yield, environmental
pollution, unregulated temperature, and poor quality properties. Yet the
scarcity of this information hampers efforts for efficient commercial
production. The coconut shell biomass was obtained from a local shop in
Malaysia. It was heated in the reactor at a fixed residence time of 60 min and
a particle size of 5 mm with nitrogen as a carrier gas. The relationship
between temperature and the properties of coconut shell charcoal has been
ascertained by the findings of this analysis. The relatively high the
temperature, the better the charcoal quality, but the lowest the charcoal
yields, since the secondary pyrolysis reaction expends charcoal. It was noted
that, up to a final temperature of 500 °C, the yield reduction was rapid; after
that, it was slower at 550 °C and almost stable at 600 °C. According to the
charcoal’s proximate analysis, the calorific value, fixed carbon content,
carbon content and ash content increased with temperature. Whereas, the
charcoal density, volatile matter, moisture content, and conversion
efficiencies decrease with temperature. The presence of nitrogen gas appears to
have reduced combustion reactions that promote the formation of carbon dioxide
(CO2). The methods produce the least amount of air pollutants (96 g
carbon monoxide (CO), 167 g CO2, and 64 g methane (CH4)
per 1 kg of charcoal production). The type of biomass and carbonization kiln
has an impact on the production of CO, CO2, and CH4.
Thus, the carbonization reactor used in this study has the potentials to
produce an eco-friendly charcoal with superior quality properties that can
assist in reducing environmental pollution, by proper selections of
carbonization temperature.
Keywords:
Charcoal; coconut shell biomass; downdraft reactor; renewable energy; slow
pyrolysis; temperature
ABSTRAK
Nilai
biojisim tempurung kelapa sebagai bahan bakar yang boleh diperbaharui di rumah
dan industri komersial boleh dipertimbangkan, keberkesanan bahan bakar sebagai
sumber biojisim ini telah diabaikan oleh masyarakat dan para penyelidik. Kajian
tentang proses terhadap biojisim tempurung kelapa dilakukan dalam
reaktor alir turun pengkarbonan (ketinggian 750 mm dan diameter 67 mm) untuk
menentukan kesan suhu (250 hingga 600 °C, dengan selang 50 °C) pada sifat
arang. Kajian ini adalah untuk mengatasi masalah penggunaan kaedah penghasilan
arang secara tradisi yang meliputi: hasil rendah, pencemaran alam sekitar, suhu
tidak terkawal dan sifat arang yang berkualiti rendah. Namun kekurangan
maklumat ini menghalang usaha pengeluaran komersial yang cekap. Biojisim
tempurung kelapa diperoleh dari sebuah kedai tempatan di Malaysia. Ia
dipanaskan di reaktor pada masa mastautin selama 60 min dan ukuran zarah 5 mm
dengan nitrogen sebagai gas pembawa. Hubungan antara suhu dan sifat arang
tempurung kelapa telah ditentukan daripada penemuan analisis kajian ini. Secara
relatif, semakin tinggi suhu semakin baik kualiti arang, tetapi arang yang
dihasilkan adalah sedikit, ini kerana reaksi pirolisis sekunder mengembangkan
arang. Telah diperhatikan bahawa, hingga suhu akhir 500 °C, jmlah penurunan
arang adalah cepat; selepas itu, ia menjadi perlahan apabila suhu pada 550 °C
dan hampir stabil pada 600 °C. Menurut analisis proksimat arang, nilai kalori,
kandungan karbon tetap, kandungan karbon dan kandungan abu meningkat dengan
suhu. Manakala kepadatan arang, bahan mudah meruap, kandungan kelembapan dan
kecekapan penukaran menurun dengan suhu. Kehadiran gas nitrogen menunjukkan
pengurangan tindak balas pembakaran yang mendorong pembentukan karbon dioksida
(CO2). Kaedah yang menghasilkan jumlah pencemaran udara paling
sedikit (96 g karbon monoksida (CO), 167 g CO2 dan 64 g metana (CH4)
setiap 1 kg penghasilan arang). Jenis biojisim dan tanur pengkarbonan memberi
kesan terhadap pengeluaran CO, CO2 dan CH4. Oleh itu,
reaktor pengkarbonan yang digunakan dalam kajian ini berpotensi untuk
menghasilkan arang mesra alam dengan sifat kualiti yang lebih tinggi serta
dapat membantu mengurangkan pencemaran alam sekitar dengan pemilihan suhu
pengkarbonan yang tepat.
Kata
kunci: Arang; biojisim tempurung
kelapa; pirolisis perlahan; reaktor alir turun; suhu; tenaga yang boleh
diperbaharui
REFERENCES
Ahmad, M.S., Mehmood, M.A., Taqvi,
S.T.H., Elkamel, A., Liu, C.G., Xu, J., Rahimuddin, S.A. & Gull, M. 2017.
Pyrolysis, kinetics analysis, thermodynamics parameters and reaction mechanism
of Typha latifolia to evaluate its
bioenergy potential. Bioresource Technology 245: 491-501.
Ahmad, R.K., Sulaiman, S.A., Inayat,
M. & Umar, H.A. 2020a. The effects of temperature, residence time and
particle size on a charcoal produced from coconut shell. In IOP Conference Series: Materials Science and
Engineering. IOP. 012005.
Ahmad, R.K., Sulaiman, S.A., Inayat, M. & Umar, H.A. 2020b. Effects of process conditions on calorific value and yield of charcoal produced from pyrolysis of coconut shells. Advances in Manufacturing Engineering, Lecture Notes in Mechanical Engineering, edited by Emamian, S.S., Awang, M. & Yusof, F. Singapore: Springer. pp. 253-262.
Ahmad, R.K., Sulaiman, S.A., Yusuf,
S.B., Dol, S.S., Umar, H.A. & Inayat, M. 2020c. The influence of pyrolysis
process conditions on the quality of coconut shells charcoal. Platform: A Journal of Engineering 4(1):
73-81.
Antal Jr., M.J., Allen, S.G., Dai,
X., Shimizu, B., Tam, M.S. & Grønli, M. 2000. Attainment of the theoretical
yield of carbon from biomass. Industrial
& Engineering Chemistry Research 39(11): 4024-4031.
ASTM. 2018. Standard Test Method for
Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter. American
Society for Testing and Materials (ASTM).
ASTM. 2015. Standard Practice for
Ultimate Analysis of Coal and Coke. American Society for Testing and Materials
(ASTM).
ASTM. 2014. Standard Test Method for
Compositional Analysis by Thermogravimetry. American Society for Testing and
Materials (ASTM).
ASTM. 2013. Standard Test Method for
Moisture Analysis of Particulate Wood Fuels. American Society for Testing and
Materials (ASTM).
Azargohar, R., Nanda, S., Kozinski,
J.A., Dalai, A.K. & Sutarto, R. 2014. Effects of temperature on the
physicochemical characteristics of fast pyrolysis bio-chars derived from
Canadian waste biomass. Fuel 125:
90-100.
Basu, P. 2010. Biomass Gasification and Pyrolysis: Practical Design and Theory.
Massachusetts: Academic Press. pp. 1-377.
Baygan, G.D., Loretero, M. &
Manilhig, M. 2019. Coconut shell pyrolysis for optimum charcoal production. In Proceedings of International Conference on Technological Challenges for Better
World. ICTCBW. pp. 1-10.
Bhatt, B.P. & Todaria, N.P.
1992. Firewood characteristics of some mountain trees and shrubs. The Commonwealth Forestry Review 71:
183-185.
Chandrasekaran, A., Subbiah, S.,
Bartocci, P., Yang, H. & Fantozzi, F. 2021. Carbonization using an improved
natural draft retort reactor in India: Comparison between the performance of
two woody biomasses, Prosopis juliflora and Casuarina equisetifolia. Fuel 285: 119095.
Chandrasekaran, A., Subbiah, S.,
Ramachandran, S., Narayanasamy, S., Bartocci, P. & Fantozzi, F. 2019.
Natural draft-improved carbonization retort system for biocarbon production
from Prosopis juliflora biomass. Energy & Fuels 33(11): 11113-11124.
Chen, D., Li, Y., Deng, M., Wang,
J., Chen, M., Yan, B. & Yuan, Q. 2016. Effect of torrefaction pretreatment
and catalytic pyrolysis on the pyrolysis poly-generation of pine wood. Bioresource Technology 214: 615-622.
Chidumayo, E.N. & Gumbo, D.J.
2013. The environmental impacts of charcoal production in tropical ecosystems
of the world: A synthesis. Energy for
Sustainable Development 17(2): 86-94.
Demirbas, A., Ahmad, W., Alamoudi,
R. & Sheikh, M. 2016. Sustainable charcoal production from biomass. Energy Sources Part A: Recovery,
Utilization, and Environmental Effects 38(13): 1882-1889.
The Food and Agriculture
Organization (FAO). 2017. The Charcoal Transition: Greening the Charcoal Value
Chain to Mitigate Climate Change and Improve Local Livelihoods.
The Food and Agriculture
Organization (FAO). 1987. Chapter 10: Using charcoal efficiently. Simple Technologies for Charcoal Making.
Food and Agriculture Organization of the United Nations. Rome, Italy: Forestry Department.
The Food and Agriculture
Organization (FAO) 1962. Charcoal for Domestic and Industrial Use.
Foraminifera. 2018. Coconut Chips Production in Nigeria: The
Feasibility Report. Foraminifera Market Research Limited.
https://foramfera.com/coconut.
Júnior, A.F.D., Esteves, R.P., Da
Silva, A.M., Júnior, A.D.S., Oliveira, M.P., Brito, J.O., Napoli, A. &
Braga, B.M. 2020. Investigating the pyrolysis temperature to define the use of
charcoal. European Journal of Wood and
Wood Products 78(1): 193-204.
Kongnine, D.M., Kpelou, P., Attah,
N.G., Kombate, S., Mouzou, E., Djeteli, G. & Napo, K. 2020. Energy resource
of charcoals derived from some tropical fruits nuts shells. International Journal of Renewable Energy
Development 9(1): 29-35.
Pestaño, L.D.B. & Jose, W.I.
2016. Production of solid fuel by torrefaction using coconut leaves as
renewable biomass. International Journal
of Renewable Energy Development 5(3): 11.
Qin, L., Wu, Y., Hou, Z. &
Jiang, E. 2020. Influence of biomass components, temperature and pressure on
the pyrolysis behavior and biochar properties of pine nut shells. Bioresource Technology 313: 123682.
Ritchie, H. & Roser, M. 2017. Fossil Fuels. https://ourworldindata.org/.
Ronsse, F., Van Hecke, S.,
Dickinson, D. & Prins, W. 2013. Production and characterization of slow
pyrolysis biochar: Influence of feedstock type and pyrolysis conditions. Bioenergy 5(2): 104-115.
Sari, R.M., Gea, S., Wirjosentono,
B., Hendrana, S. & Hutapea, Y.A. 2020. Improving quality and yield
production of coconut shell charcoal through a modified pyrolysis reactor with
tar scrubber to reduce smoke pollution. Polish
Journal of Environmental Studies 29(2): 1815-1824.
Song, H., Liu, G. & Wu, J. 2016.
Pyrolysis characteristics and kinetics of low rank coals by distributed
activation energy model. Energy
Conversion and Management 126: 1037-1046.
Sparrevik, M., Adam, C., Martinsen,
V. & Cornelissen, G. 2015. Emissions of gases and particles from
charcoal/biochar production in rural areas using medium-sized traditional and
improved “retort” kilns. Biomass and
Bioenergy 72: 65-73.
Strezov, V., Popovic, E., Filkoski,
R.V., Shah, P. & Evans, T. 2017. Assessment of the thermal processing
behavior of tobacco waste. Energy &
Fuels 26(9): 5930-5935.
Yaman, S. 2004. Pyrolysis of biomass
to produce fuels and chemical feedstocks. Energy Conversion Management 45(5): 651-671.
Yang, H., Huang, L., Liu, S., Sun,
K. & Sun, Y. 2016. Pyrolysis process and characteristics of products from
sawdust briquettes. BioResources 11(1): 2438-2456.
Yang, X., Kang, K., Qiu, L., Zhao,
L. & Sun, R. 2020. Effects of carbonization conditions on the yield and
fixed carbon content of biochar from pruned apple tree branches. Renewable Energy 146: 1691-1699.
Yerima, I. & Grema, M.Z. 2018.
The potential of coconut shell as biofuel. Journal
of Middle East and North Africa Sciences 4(5): 11-15.
Zainab, M., El Hanandeh, A. &
Yu, Q.J. 2015. Date palm (Phoenix
dactylifera L.) seed characterization for biochar preparation. The 6th International Conference on
Engineering, Project, and Production Management. Publons. pp. 130-138.
Zhao, B., O'Connor, D., Zhang, J.,
Peng, T., Shen, Z., Tsang, D.C. & Hou, D. 2018. Effect of pyrolysis
temperature, heating rate, and residence time on rapeseed stem derived biochar. Journal of Cleaner Production 174:
977-987.
*Corresponding author; email: rkahmad.age@buk.edu.ng
|