Sains Malaysiana 50(1)(2021): 135-149

http://dx.doi.org/10.17576/jsm-2021-5001-14

 

Preparation and Characterization of Copper, Iron, and Nickel Doped Titanium Dioxide Photocatalysts for Decolorization of Methylene Blue

(Penyediaan dan Pencirian Fotomangkin daripada Tembaga, Besi dan Nikel Titanium Dioksida untuk Penyahwarnaan Metilena Biru)

 

JAWED QADERI1,2, CHE ROZID MAMAT1 & AISHAH ABDUL JALIL3,4

 

1Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Darul Takzim, Malaysia

 

2Department of Physical Chemistry, Faculty of Chemistry, Kabul University, Jamal Mina, Kabul, Afghanistan

 

3School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Darul Takzim, Malaysia

 

4Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Darul Takzim, Malaysia

 

Received: 7 April 2020/Accepted: 23 June 2020

 

ABSTRACT

The visible-light response is a necessary condition for titanium dioxide (TiO2) photocatalyst to function as a visible light active photocatalyst. This condition can be solved by investigation of the bandgaps and the optimization of doping levels of multivalency metal-doped TiO2. In this study, pure and Cu, Fe, and Ni-doped TiO2 photocatalysts were prepared by the sol‐gel method. The photocatalysts were characterized using XRD, FTIR, FESEM, EDX, N2 physisorption, and UV‐Vis spectrophotometry techniques. The XRD patterns of all pure TiO2 and Cu/TiO2, Fe/TiO2, and Ni/TiO2 samples showed the dominant structure of the anatase TiO2 phase. The presence of functional groups at the interface of TiO2 particles was showed by FTIR. The FESEM analysis showed that the particle size of the prepared samples was uniform with spherical morphology. EDX results showed that TiO2 has successfully incorporated Cu, Fe, and Ni metals onto its surface. The BET analysis showed that the specific surface area of the doped samples increased with the amount of doping. The optical properties of all samples were carried out using UV‑DRS measurements and their obtained bandgap energies were in the range of 3.22 - 3.42 eV. The pure TiO2 displayed more than 98% and 97% decolorization rates for MB solution at the end of irradiation time of 5 h under UV and visible light, respectively. Among the doped samples, 3 mol% Ni/TiO2 and Cu/TiO2 demonstrated the highest photocatalytic activity (97.65%) under UV light and 6 mol% Ni/TiO2 under visible light for MB (96.86%) decolorization.

 

Keywords: Cu/TiO2; Fe/TiO2; Ni/TiO2; photocatalyst; sol-gel; titanium dioxide (TiO2)

 

ABSTRAK

Tindak balas cahaya nampak adalah syarat penting fotomangkin titanium dioksida (TiO2) berfungsi sebagai fotomangkin cahaya tampak aktif. Keadaan ini boleh diselesaikan dengan penyelidikan jurang jalur dan pengoptimuman kandungan dopan logam pelbagai valensi dalam TiO2. Dalam kajian ini, fotomangkin TiO2 tulen dan yang didopkan dengan logam peralihan pada kala keempat iaitu, Cu, Fe, dan Ni, telah disediakan melalui kaedah sol‐gel. Fotomangkin dicirikan menggunakan teknik XRD, FTIR, FESEM, EDX, N2 dan spektrofotometri UV‐Vis. Spektrum XRD bagi semua TiO2 tulen dan Cu/TiO2, Fe/TiO2 dan Ni/TiO2 menunjukkan struktur dominan fasa anatase TiO2. Kehadiran ikatan kimia yang kuat antara permukaan zarah TiO2 telah dibuktikan oleh FTIR. Analisis FESEM mendedahkan bahawa saiz zarah sampel yang disediakan seragam dengan morfologi sfera. Keputusan EDX menunjukkan TiO2 telah berjaya didopkan dengan logam Cu, Fe dan Ni di atas permukaannya. Analisis BET menunjukkan kawasan permukaan khusus sampel dopan meningkat dengan jumlah bahan dopan. Sifat optik kesemua sampel telah diuji menggunakan kaedah pengukuran UV‐DRS dan tenaga jalur yang diperoleh berada dalam julat 3.22 - 3.42 eV. Fotomangkin TiO2 tulen menunjukkan lebih daripada 98% dan 97% kadar penguraian foto untuk MB pada penghujung masa penyinaran selama 5 jam di bawah sinaran UV dan cahaya nampak. Antara semua sampel TiO2 yang berdop, 3 mol% Ni/TiO2 dan Cu/TiO2 menunjukkan aktiviti fotomangkin tertinggi (97.65%) di bawah cahaya UV dan 6 mol% Ni/TiO2 di bawah cahaya tampak untuk MB (96.86%).

 

Kata kunci: Cu/TiO2; Fe/TiO2; Ni/TiO2; fotomangkin; sol-gel; titanium dioksida (TiO2)

 

REFERENCES

Adekoya, D., Tahir, M. & Amin, N.A.S. 2019. Recent trends in photocatalytic materials for reduction of carbon dioxide to methanol. Renewable and Sustainable Energy Reviews 116: 109389.

Aguilar, T., Navas, J., Alcántara, R., Fernández-Lorenzo, C., Gallardo, J.J., Blanco, G. & Martín-Calleja, J. 2013. A route for the synthesis of Cu-doped TiO2 nanoparticles with a very low bandgap. Chemical Physics Letters 571: 49-53.

Ahmad, A.L. & Puasa, S.W. 2007. Reactive dyes decolourization from an aqueous solution by combined coagulation/micellar-enhanced ultrafiltration process. Chemical Engineering Journal 132(1-3): 257-265.

Ali, T., Tripathi, P., Azam, A., Raza, W., Ahmed, A.S., Ahmed, A. & Muneer, M. 2017. Photocatalytic performance of Fe-doped TiO2 nanoparticles under visible-light irradiation. Materials Research Express 4(1): 015022.

Derudi, M., Venturini, G., Lombardi, G., Nano, G. & Rota, R. 2007. Biodegradation combined with ozone for the remediation of contaminated soils. European Journal of Soil Biology 43(5-6): 297-303.

Edelmannová, M., Lin, K.Y., Wu, J.C., Troppová, I., Čapek, L. & Kočí, K. 2018. Photocatalytic hydrogenation and reduction of CO2 over CuO/TiO2 photocatalysts. Applied Surface Science 454: 313-318.

Ganesh, I., Gupta, A.K., Kumar, P.P., Sekhar, P.S.C., Radha, K., Padmanabham, G. & Sundararajan, G. 2012. Preparation and characterization of Ni-doped materials for photocurrent and photocatalytic applications. The Scientific World Journal 2012: 1-16.

Guo, G., He, C., Wang, Z., Gu, F. & Han, D. 2007. Synthesis of titania and titanate nanomaterials and their application in environmental analytical chemistry. Talanta 72(5): 1687-1692.

Haque, M.M., Khan, A., Umar, K., Mir, N.A., Muneer, M., Harada, T. & Matsumura, M. 2013. Synthesis, characterization and photocatalytic activity of visible light induced Ni-doped TiO2. Energy and Environment Focus 2(1): 73-78.

Hu, J., Zhan, L., Zhang, G., Zhang, Q., Du, L., Tung, C.H. & Wang, Y. 2016. Effects of substitutional dopants on the photoresponse of a polyoxotitanate cluster. Inorganic Chemistry 55(17): 8493-8501.

Inturi, S.N.R., Boningari, T., Suidan, M. & Smirniotis, P.G. 2014. Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2. Applied Catalysis B: Environmental 144: 333-342.

Jothibas, M., Manoharan, C., Jeyakumar, S.J., Praveen, P., Punithavathy, I.K. & Richard, J.P. 2018. Synthesis and enhanced photocatalytic property of Ni doped ZnS nanoparticles. Solar Energy 159: 434-443.

Kavitha, V., Ramesh, P.S. & Geetha, D. 2016. Synthesis of Cu loaded TiO2 nanoparticles for the improved photocatalytic degradation of rhodamine B. International Journal of Nanoscience 15(5-6): 1660002.

Kerkez, Ö. & Boz, İ. 2014. Photo (electro) catalytic activity of Cu2+-modified TiO2 nanorod array thin films under visible light irradiation. Journal of Physics and Chemistry of Solids 75(5): 611-618.

Kerkez-Kuyumcu, Ö., Kibar, E., Dayıoğlu, K., Gedik, F., Akın, A.N. & Özkara-Aydınoğlu, Ş. 2015. A comparative study for removal of different dyes over M/TiO2 (M = Cu, Ni, Co, Fe, Mn and Cr) photocatalysts under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry 311: 176-185.

Krishnakumar, V., Boobas, S., Jayaprakash, J., Rajaboopathi, M., Han, B. & Louhi-Kultanen, M. 2016. Effect of Cu doping on TiO2 nanoparticles and its photocatalytic activity under visible light. Journal of Materials Science: Materials in Electronics 27(7): 7438-7447.

Li, Z., Shen, W., He, W. & Zu, X. 2008. Effect of Fe-doped TiO2 nanoparticle derived from modified hydrothermal process on the photocatalytic degradation performance on methylene blue. Journal of Hazardous Materials 155(3): 590-594.

Liu, S.X., Chen, X.Y. & Chen, X. 2007. A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method. Journal of Hazardous Materials 143(1-2): 257-263.

Manzoor, M., Rafiq, A., Ikram, M., Nafees, M. & Ali, S. 2018. Structural, optical, and magnetic study of Ni-doped TiO2 nanoparticles synthesized by sol-gel method. International Nano Letters 8(1): 1-8.

Mo, J.H., Lee, Y.H., Kim, J., Jeong, J.Y. & Jegal, J. 2008. Treatment of dye aqueous solutions using nanofiltration polyamide composite membranes for the dye wastewater reuse. Dyes and Pigments 76(2): 429-434.

Nakhate, G.G., Nikam, V.S., Kanade, K.G., Arbuj, S., Kale, B.B. & Baeg, J.O. 2010. Hydrothermally derived nanosized Ni-doped TiO2: A visible light driven photocatalyst for methylene blue degradation. Materials Chemistry and Physics 124(2-3): 976-981.

Nankya, R. & Kim, K.N. 2016. Sol-gel synthesis and characterization of Cu-TiO2 nanoparticles with enhanced optical and photocatalytic properties. Journal of Nanoscience and Nanotechnology 16(11): 11631-11634.

Thu, T.N.T., Thi, N.N., Quang, V.T., Hong, K.N., Minh, N.T. & Hoai, N.L.T. 2016. Synthesis, characterisation, and effect of pH on degradation of dyes on copper-doped TiO2. Journal of Experimental Nanoscience 11(3): 226-238.

Ni, M., Leung, M.K., Leung, D.Y. & Sumathy, K. 2007. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews 11(3): 401-425.

Rajamannan, B., Mugundan, S., Viruthagiri, G., Praveen, P. & Shanmugam, N. 2014a. Linear and nonlinear optical studies of bare and copper doped TiO2 nanoparticles via sol gel technique. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 118: 651-656.

Rajamannan, B., Mugundan, S., Viruthagiri, G., Shanmugam, N., Gobi, R. & Praveen, P. 2014b. Preparation, structural and morphological studies of Ni doped titania nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 128: 218-224.

Rauf, M.A. & Ashraf, S.S. 2009. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chemical Engineering Journal 151(1-3): 10-18.

Riaz, N., Kait, C.F., Man, Z., Dutta, B.K., Ramli, R.M. & Khan, M.S. 2014. Visible light photodegradation of azo dye by Cu/TiO2. Advanced Materials Research 917: 151-159.

Sahoo, C. & Gupta, A.K. 2015. Characterization and photocatalytic performance evaluation of various metal ion-doped microstructured TiO2 under UV and visible light. Journal of Environmental Science and Health, Part A 50(7): 659-668.  

Sakthivel, T. & Jagannathan, K. 2017. Structural, optical, morphological and elemental analysis on sol-gel synthesis of Ni doped TiO2 nanocrystallites. Mechanics, Materials Science & Engineering Journal 9(1): 2412-5954.

Salehi, M., Hashemipour, H. & Mirzaee, M. 2012. Experimental study of influencing factors and kinetics in catalytic removal of methylene blue with TiO2 nanopowder. American Journal of Environmental Engineering 2(1): 1-7.

Shehzad, N., Tahir, M., Johari, K., Murugesan, T. & Hussain, M. 2018. A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. Journal of CO2 Utilization 26: 98-122.

Singla, P., Pandey, O.P. & Singh, K. 2015. Study of photocatalytic degradation of environmentally harmful phthalate esters using Ni-doped TiO2 nanoparticles. International Journal of Environmental Science and Technology 13(3): 849-856.

Sood, S., Umar, A., Mehta, S.K. & Kansal, S.K. 2015. Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds. Journal of Colloid and Interface Science 450: 213-223.

Soutsas, K., Karayannis, V., Poulios, I., Riga, A., Ntampegliotis, K., Spiliotis, X. & Papapolymerou, G. 2010. Decolorization and degradation of reactive azo dyes via heterogeneous photocatalytic processes. Desalination 250(1): 345-350.

Su, B., Wang, K., Bai, J., Mu, H., Tong, Y., Min, S., She, S. & Lei, Z. 2007. Photocatalytic degradation of methylene blue on Fe3+-doped TiO2 nanoparticles under visible light irradiation. Frontiers of Chemistry in China 2(4): 364-368.

Vargas, D.X.M., De la Rosa, J.R., Lucio-Ortiz, C.J., Hernández-Ramirez, A., Flores-Escamilla, G.A. & Garcia, C.D. 2015. Photocatalytic degradation of trichloroethylene in a continuous annular reactor using Cu-doped TiO2 catalysts by sol-gel synthesis. Applied Catalysis B: Environmental 179: 249-261.

Venkatachalam, N., Palanichamy, M. & Murugesan, V. 2007. Sol-gel preparation and characterization of nanosize TiO2: Its photocatalytic performance. Materials Chemistry and Physics 104(2-3): 454-459.

Yang, X.J., Shu, W., Sun, H.M., Wang, X.B. & Lian, J.S. 2015. Preparation and photocatalytic performance of Cu-doped TiO2 nanoparticles. Transactions of Nonferrous Metals Society of China 25(2): 504-509.

Yoong, L.S., Chong, F.K. & Dutta, B.K. 2009. Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light. Energy 34(10): 1652-1661.

Zhang, F., Cheng, Z., Kang, L., Cui, L., Liu, W., Xu, X., Hou, G. & Yang, H. 2015. A novel preparation of Ag-doped TiO2 nanofibers with enhanced stability of photocatalytic activity. RSC Advances 5(41): 32088-32091.

 

*Corresponding author; email: cherozid@tm.my

 

 

 

previous