Sains Malaysiana 50(1)(2021): 253-260

http://dx.doi.org/10.17576/jsm-2021-5001-24

 

Case Studies of Photospheric Magnetic Field Properties of Active Regions Associated with X-class Solar Flares

(Kajian Kes Sifat Medan Magnet Fotosfera Rantau Aktif dikaitkan dengan Suar Matahari Kelas X)

 

WAI-LEONG TEH1* & FARAHANA KAMARUDIN2

 

1Space Science Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Langkawi National Observatory, Malaysian Space Agency, Empangan Bukit Malut, 07000 Langkawi, Kedah Darul Aman, Malaysia

 

Received: 17 March 2020/Accepted: 12 June 2020

 

ABSTRACT

Solar flares are a transient phenomenon occurred in the active region (AR) on the Sun’s surface, producing intense emissions in EUV and soft X-ray that can wreak havoc in the near-Earth space mission and satellite as well as radio-based communication and navigation. The ARs are accompanied with strong magnetic fields and manifested as dark spots on the photosphere. To understand the photospheric magnetic field properties of the ARs that produce intense flares, two ARs associated with X-class flares, namely AR 12192 and AR 12297, occurred respectively on 25 October 2014 and 11 March 2015, are studied in terms of magnetic classification and various physical magnetic parameters. Solar images from the Langkawi National Observatory (LNO) and physical magnetic parameters from the Space-weather HMI Active Region Patches (SHARP) are used in this study. A total of seven SHARP magnetic parameters are examined which are calculated as sums of various magnetic quantities and have been identified as useful predictors for flare forecast. These two ARs are classified as  sunspots whereas their formation and size are quite different from each other. Our results showed that the intensity of a flare has little relationship with the area of an AR and the magnetic free energy; and the temporal variation of individual magnetic parameter has no obvious and consistent pre-flare feature. It is concluded that the temporal variation of individual magnetic parameter may not be useful for predicting the onset time of a flare.

 

Keywords: Active region; photospheric magnetic field; solar flare

 

ABSTRAK

Suar suria ialah satu fenomena yang berlaku di rantau aktif permukaan Matahari dengan menghasilkan pancaran peramatan dalam EUV dan sinar-X lembut yang boleh memberikan kesan kepada misi angkasa lepas-bumi dan satelit serta komunikasi berasaskan radio dan navigasi. Rantau aktif ini mempunyai medan magnet yang kuat dan dimanifestasikan sebagai tompok gelap pada permukaan fotosfera Matahari. Bagi memahami ciri medan magnet di lapisan fotosfera, dua kawasan rantau aktif iaitu daripada AR 12192 dan AR 12297 yang telah menghasilkan suar suria kelas X pada 25 Oktober 2014 dan 11 Mac 2015 telah dikaji dalam penyelidikan ini bagi meneliti pengelasan magnet dan pelbagai parameter fizikal magnet. Imej Matahari dari Observatori Negara Langkawi dan parameter fizikal magnet dariSpace-weather HMI Active Region Patches (SHARP) telah digunakan dalam kajian ini. Sebanyak tujuh parameter magnet dari SHARP dianalisis dan parameter ini telah dikenal pasti dapat membantu dalam peramalan suar suria. Kedua-dua rantau aktif ini dikelaskan dalam tompok matahari berkelas  sedangkan pembentukan dan saiz kedua-dua rantau ini agak berbeza antara satu sama lain. Hasil penyelidikan menunjukkan keamatan suar suria mempunyai sedikit hubungan dengan kawasan rantau aktif dan tenaga bebas magnet serta perubahan parameter magnet bagi setiap rantau aktif tidak mempunyai ciri awalan pancaran yang jelas dan tekal. Dengan itu, dapat disimpulkan bahawa perubahan parameter magnet individu mungkin tidak boleh digunakan sebagai salah satu ciri dalam peramalan permulaan suar.

 

Kata kunci: Medan magnet fotosfera; rantau aktif; suar suria

 

REFERENCES

Bamba, Y., Kusano, K., Yamamoto, T.T. & Okamoto, T.J. 2013. Study on the triggering process of solar flares based on Hinode/SOT observations. The Astrophysical Journal 778(1): 48-61.

Barnes, G. & Leka, K.D. 2006. Photospheric magnetic field properties of flaring versus flare-quiet active regions. III. Magnetic charge topology models. The Astrophysical Journal 646(2): 1303-1318.

Bobra, M.G. & Couvidat, S. 2015. Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. The Astrophysical Journal 798(2): 135-146.

Bobra, M.G., Sun, X., Hoeksema, J.T., Turmon, M., Liu, Y., Hayashi, K., Barnes, G. & Leka, K.D. 2014. The helioseismic and magnetic imager (HMI) vector magnetic field pipelines: SHARPs - space-weather HMI active region patches. Solar Physics 289(9): 3549-3578.

Emslie, A.G., Kucharek, H., Dennis, B.R., Gopalswamy, N., Holman, G.D., Share, G.H., Vourlidas, A., Forbes, T.G., Gallagher, P.T., Mason, G.M. & Metcalf, T.R. 2004. Energy partition in two solar flare/CME events. Journal of Geophysical Research: Space Physics 109(A10): 1-15.

Feynman, J. & Martin, S.F. 1995. The initiation of coronal mass ejections by newly emerging magnetic flux. Journal of Geophysical Research: Space Physics 100(A3): 3355-3367.

Gou, J., Lin, J.B. & Deng, Y.Y. 2014. The dependence of flares on the magnetic classification of the source regions in solar cycles 22-23. Monthly Notices of the Royal Astronomical Society 441(13): 2208-2211.

Hagyard, M.J., Smith, J.B., Teuber, D. & West, E.A. 1984. A quantitative study relating observed shear in photospheric magnetic fields to repeated flaring. Solar Physics 91(1): 115-126.

Hoeksema, J.T., Liu, Y., Hayashi, K., Sun, X., Schou, J., Couvidat, S., Norton, A., Bobra, M., Centeno, R., Leka, K.D. & Barnes, G. 2014. The helioseismic and magnetic imager (HMI) vector magnetic field pipeline: overview and performance. Solar Physics 289(9): 3483-3530.

Jing, J., Tan, C., Yuan, Y., Wang, B., Wiegelmann, T., Xu, Y. & Wang, H. 2010. Free magnetic energy and flare productivity of active regions. The Astrophysical Journal 713(1): 440-449.

Kamarudin, F., Tahar, M.R., Saibaka, N.R. & Padang, L.A.L. 2017. Relative sunspot number observed from 2013 to 2015 at Langkawi National Observatory. Advanced Science Letters 23(2): 1285-1288.

Kusano, K., Bamba, Y., Yamamoto, T.T., Iida, Y., Toriumi, S. & Asai, A. 2012. Magnetic field structures triggering solar flares and coronal mass ejections. The Astrophysical Journal 760(1): 31-40.

Kusano, K., Maeshiro, T., Yokoyama, T. & Sakurai, T. 2004. The trigger mechanism of solar flares in a coronal arcade with reversed magnetic shear. The Astrophysical Journal 610(1): 537-549.

Leka, K.D. & Barnes, G. 2007. Photospheric magnetic field properties of flaring versus flare-quiet active regions. IV. A statistically significant sample. The Astrophysical Journal 656(2): 1173-1186.

Leka, K.D. & Barnes, G. 2003. Photospheric magnetic field properties of flaring versus flare-quiet active regions. II. Discriminant analysis. The Astrophysical Journal 595(2): 1296-1306.

Liu, C., Deng, N., Wang, J.T. & Wang, H. 2017. Predicting solar flares using SDO/HMI vector magnetic data products and the random forest algorithm. The Astrophysical Journal 843(2): 104-118.

Moore, R.L., Sterling, A.C., Hudson, H.S. & Lemen, J.R. 2001. Onset of the magnetic explosion in solar flares and coronal mass ejections. The Astrophysical Journal 552(2): 833-848.

Pesnell, W.D., Thompson, B. & Chamberlin, P. 2012. The solar dynamics observatory (SDO). In The Solar Dynamics Observatory, edited by Chamberlin, P., Pesnell, W.D. & Thompson, B. New York: Springer. 275: 3-15.

Reeves, K.K., Linker, J.A., Mikić, Z. & Forbes, T.G. 2010. Current sheet energetics, flare emissions, and energy partition in a simulated solar eruption. The Astrophysical Journal 721(2): 1547-1558.

Sammis, I., Tang, F. & Zirin, H. 2000. The dependence of large flare occurrence on the magnetic structure of sunspots. The Astrophysical Journal 540(1): 583-587.

Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L. & Akin, D.J. 2012. Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Solar Physics 275(1-2): 229-259.

Schrijver, C.J. 2007. A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. The Astrophysical Journal Letters 655(2): L117-L120.

Su, J.T., Jing, J., Wang, S., Wiegelmann, T. & Wang, H.M. 2014. Statistical study of free magnetic energy and flare productivity of solar active regions. The Astrophysical Journal 788(2): 150-160.

Teh, W.L. 2019. A statistical study of photospheric magnetic field properties of active regions associated with M- and X-class flares using SDO/HMI vector magnetic field data. Journal of Atmospheric and Solar-Terrestrial Physics 188: 44-51.

Tian, L.R., Alexander, D., Liu, Y. & Yang, J. 2005. Magnetic twist and writhe of δ active regions. Solar Physics 229(1): 63-77.

Török, T. & Kliem, B. 2005. Confined and ejective eruptions of kink-unstable flux ropes. The Astrophysical Journal Letters 630(1): L97-L100.

Yang, Y.H., Hsieh, M.S., Yu, H.S. & Chen, P.F. 2017. A statistical study of flare productivity associated with sunspot properties in different magnetic types of active regions. The Astrophysical Journal 834(2): 150-161.

 

*Corresponding author; email: wteh@ukm.edu.my

 

 

 

previous