Sains Malaysiana 50(1)(2021): 253-260
http://dx.doi.org/10.17576/jsm-2021-5001-24
Case
Studies of Photospheric Magnetic Field Properties of
Active Regions Associated with X-class Solar Flares
(Kajian Kes Sifat Medan Magnet Fotosfera Rantau Aktif dikaitkan dengan Suar Matahari Kelas X)
WAI-LEONG
TEH1* & FARAHANA KAMARUDIN2
1Space Science Centre, Institute of Climate
Change, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Langkawi National Observatory, Malaysian
Space Agency, Empangan Bukit Malut,
07000 Langkawi, Kedah Darul Aman,
Malaysia
Received:
17 March 2020/Accepted: 12 June 2020
ABSTRACT
Solar
flares are a transient phenomenon occurred in the active region (AR) on the
Sun’s surface, producing intense emissions in EUV and soft X-ray that can wreak
havoc in the near-Earth space mission and satellite as well as radio-based
communication and navigation. The ARs are accompanied with strong magnetic
fields and manifested as dark spots on the photosphere. To understand the photospheric magnetic field properties of the ARs that
produce intense flares, two ARs associated with X-class flares, namely AR 12192
and AR 12297, occurred respectively on 25 October 2014 and 11 March 2015, are
studied in terms of magnetic classification and various physical magnetic
parameters. Solar images from the Langkawi National Observatory (LNO) and
physical magnetic parameters from the Space-weather HMI Active Region Patches
(SHARP) are used in this study. A total of seven SHARP magnetic parameters are
examined which are calculated as sums of various magnetic quantities and have
been identified as useful predictors for flare forecast. These two ARs are
classified as
sunspots whereas their formation and size are
quite different from each other. Our results showed that the intensity of a
flare has little relationship with the area of an AR and the magnetic free
energy; and the temporal variation of individual magnetic parameter has no
obvious and consistent pre-flare feature. It is concluded that the temporal
variation of individual magnetic parameter may not be useful for predicting the
onset time of a flare.
Keywords:
Active region; photospheric magnetic field; solar
flare
ABSTRAK
Suar suria ialah satu fenomena yang berlaku di rantau aktif permukaan Matahari dengan menghasilkan pancaran peramatan dalam EUV dan sinar-X lembut yang boleh memberikan kesan kepada misi angkasa lepas-bumi dan satelit serta komunikasi berasaskan radio dan navigasi. Rantau aktif ini mempunyai medan magnet yang kuat dan dimanifestasikan sebagai tompok gelap pada permukaan fotosfera Matahari. Bagi memahami ciri medan magnet di lapisan fotosfera, dua kawasan rantau aktif iaitu daripada AR 12192 dan AR 12297 yang telah menghasilkan suar suria kelas X pada 25 Oktober 2014 dan 11 Mac 2015 telah dikaji dalam penyelidikan ini bagi meneliti pengelasan magnet dan pelbagai parameter fizikal magnet. Imej Matahari dari Observatori Negara Langkawi dan parameter fizikal magnet dariSpace-weather HMI
Active Region Patches (SHARP) telah digunakan dalam kajian ini. Sebanyak tujuh parameter magnet dari SHARP dianalisis dan parameter ini telah dikenal pasti dapat membantu dalam peramalan suar suria. Kedua-dua rantau aktif ini dikelaskan dalam tompok matahari berkelas
sedangkan pembentukan dan saiz kedua-dua
rantau ini agak berbeza antara satu sama lain. Hasil penyelidikan menunjukkan
keamatan suar suria mempunyai sedikit hubungan dengan kawasan rantau aktif dan tenaga bebas magnet serta perubahan parameter magnet bagi setiap rantau aktif tidak mempunyai ciri awalan pancaran yang jelas dan tekal. Dengan itu, dapat disimpulkan bahawa perubahan parameter magnet individu mungkin tidak boleh digunakan sebagai salah satu ciri dalam peramalan permulaan suar.
Kata kunci: Medan magnet fotosfera; rantau aktif; suar suria
REFERENCES
Bamba, Y., Kusano, K., Yamamoto, T.T. & Okamoto, T.J. 2013. Study
on the triggering process of solar flares based on Hinode/SOT
observations. The Astrophysical Journal 778(1): 48-61.
Barnes,
G. & Leka, K.D. 2006. Photospheric magnetic field properties of flaring versus flare-quiet active regions. III.
Magnetic charge topology models. The Astrophysical Journal 646(2):
1303-1318.
Bobra, M.G. & Couvidat, S. 2015. Solar flare prediction using SDO/HMI
vector magnetic field data with a machine-learning algorithm. The
Astrophysical Journal 798(2): 135-146.
Bobra, M.G., Sun, X., Hoeksema, J.T., Turmon, M., Liu,
Y., Hayashi, K., Barnes, G. & Leka, K.D. 2014.
The helioseismic and magnetic imager (HMI) vector
magnetic field pipelines: SHARPs - space-weather HMI active region patches. Solar
Physics 289(9): 3549-3578.
Emslie, A.G., Kucharek, H., Dennis, B.R., Gopalswamy,
N., Holman, G.D., Share, G.H., Vourlidas, A., Forbes,
T.G., Gallagher, P.T., Mason, G.M. & Metcalf, T.R. 2004. Energy partition
in two solar flare/CME events. Journal of Geophysical Research: Space
Physics 109(A10): 1-15.
Feynman,
J. & Martin, S.F. 1995. The initiation of coronal mass ejections by newly
emerging magnetic flux. Journal of Geophysical Research: Space Physics 100(A3): 3355-3367.
Gou,
J., Lin, J.B. & Deng, Y.Y. 2014. The dependence of flares on the magnetic
classification of the source regions in solar cycles 22-23. Monthly Notices
of the Royal Astronomical Society 441(13): 2208-2211.
Hagyard, M.J., Smith,
J.B., Teuber, D. & West, E.A. 1984. A
quantitative study relating observed shear in photospheric magnetic fields to repeated flaring. Solar Physics 91(1): 115-126.
Hoeksema,
J.T., Liu, Y., Hayashi, K., Sun, X., Schou, J., Couvidat, S., Norton, A., Bobra,
M., Centeno, R., Leka, K.D. & Barnes, G. 2014.
The helioseismic and magnetic imager (HMI) vector
magnetic field pipeline: overview and performance. Solar Physics 289(9):
3483-3530.
Jing,
J., Tan, C., Yuan, Y., Wang, B., Wiegelmann, T., Xu,
Y. & Wang, H. 2010. Free magnetic energy and flare productivity of active
regions. The Astrophysical Journal 713(1): 440-449.
Kamarudin, F., Tahar, M.R., Saibaka, N.R. &
Padang, L.A.L. 2017. Relative sunspot number observed from 2013 to 2015 at
Langkawi National Observatory. Advanced Science Letters 23(2):
1285-1288.
Kusano, K., Bamba, Y., Yamamoto, T.T., Iida, Y., Toriumi,
S. & Asai, A. 2012. Magnetic field structures
triggering solar flares and coronal mass ejections. The Astrophysical
Journal 760(1): 31-40.
Kusano, K., Maeshiro, T., Yokoyama, T. & Sakurai, T. 2004. The
trigger mechanism of solar flares in a coronal arcade with reversed magnetic
shear. The Astrophysical Journal 610(1): 537-549.
Leka, K.D. &
Barnes, G. 2007. Photospheric magnetic field
properties of flaring versus flare-quiet active regions. IV. A statistically
significant sample. The Astrophysical Journal 656(2): 1173-1186.
Leka, K.D. &
Barnes, G. 2003. Photospheric magnetic field
properties of flaring versus flare-quiet active regions. II. Discriminant
analysis. The Astrophysical Journal 595(2): 1296-1306.
Liu,
C., Deng, N., Wang, J.T. & Wang, H. 2017. Predicting solar flares using
SDO/HMI vector magnetic data products and the random forest algorithm. The
Astrophysical Journal 843(2): 104-118.
Moore,
R.L., Sterling, A.C., Hudson, H.S. & Lemen, J.R.
2001. Onset of the magnetic explosion in solar flares and coronal mass
ejections. The Astrophysical Journal 552(2): 833-848.
Pesnell, W.D., Thompson,
B. & Chamberlin, P. 2012. The solar dynamics observatory (SDO). In The
Solar Dynamics Observatory, edited by Chamberlin, P., Pesnell,
W.D. & Thompson, B. New York: Springer. 275: 3-15.
Reeves,
K.K., Linker, J.A., Mikić, Z. & Forbes, T.G.
2010. Current sheet energetics, flare emissions, and energy partition in a
simulated solar eruption. The Astrophysical Journal 721(2): 1547-1558.
Sammis, I., Tang, F.
& Zirin, H. 2000. The dependence of large flare
occurrence on the magnetic structure of sunspots. The Astrophysical Journal 540(1): 583-587.
Schou, J., Scherrer,
P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu,
Y., Duvall, T.L. & Akin, D.J. 2012. Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the
solar dynamics observatory (SDO). Solar Physics 275(1-2): 229-259.
Schrijver,
C.J. 2007. A characteristic magnetic field pattern associated with all major
solar flares and its use in flare forecasting. The Astrophysical Journal
Letters 655(2): L117-L120.
Su,
J.T., Jing, J., Wang, S., Wiegelmann, T. & Wang,
H.M. 2014. Statistical study of free magnetic energy and flare productivity of
solar active regions. The Astrophysical Journal 788(2): 150-160.
Teh, W.L. 2019. A
statistical study of photospheric magnetic field
properties of active regions associated with M- and X-class flares using
SDO/HMI vector magnetic field data. Journal of Atmospheric and
Solar-Terrestrial Physics 188: 44-51.
Tian,
L.R., Alexander, D., Liu, Y. & Yang, J. 2005. Magnetic twist and writhe of
δ active regions. Solar Physics 229(1): 63-77.
Török, T. & Kliem, B. 2005. Confined and ejective eruptions of
kink-unstable flux ropes. The Astrophysical Journal Letters 630(1):
L97-L100.
Yang,
Y.H., Hsieh, M.S., Yu, H.S. & Chen, P.F. 2017. A statistical study of flare
productivity associated with sunspot properties in different magnetic types of
active regions. The Astrophysical Journal 834(2): 150-161.
*Corresponding
author; email: wteh@ukm.edu.my
|