Sains Malaysiana 50(2)(2021): 351-360

http://dx.doi.org/10.17576/jsm-2021-5002-07

 

Soil Factors are the Drivers for Wetlands Colonization by Pneumatopteris afra in Nigeria

(Faktor Tanah adalah Pemacu Penjajahan Tanah Lembap oleh Pneumatopteris afra di Nigeria)

 

AKOMOLAFE GBENGA FESTUS1,2* & RAHMAD ZAKARIA1,3

 

1School of Biological Sciences, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia

 

2Department of Botany, Federal University of Lafia, PMB 146, Lafia, Nigeria

 

3Center for Global Sustainability Studies (CGSS), Level 5, Hamzah Sendut Library 1, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia

 

Received: 17 February 2020/Accepted: 22 July 2020

 

ABSTRACT

The relationships between soil factors and plant community characteristics of some wetlands invaded by Pneumatopteris afra and non-invaded ones were investigated. Sixty soil samples were obtained from six wetlands comprising three invaded and three non-invaded in Lafia, Nigeria using sixty quadrants arranged on six 200 m transects. The samples, after air-dried and sieved using 2 mm mesh were analysed for the physico-chemical properties which include pH, organic matter (OM), percentage nitrogen (% N), phosphorus (P), calcium (Ca), sodium (Na), potassium (K), magnesium (Mg), exchangeable acidity (EA), percentage base saturation (% BS), particle size, porosity, bulk density (BD), hydraulic conductivity (HC), and moisture content (MC) using standard methods. Direct ordination in canonical correspondence analysis was used to determine the influence of these soil factors on P. afra abundance, Shannon diversity, and species richness of both invaded and non-invaded sites. All sites differ from each other in terms of their physico-chemical parameters. The invaded sites appeared to be more acidic (pH = 3.22), less sandy, more porous (38.11%), low HC (1.23) as compared with non-invaded ones. Soil factors that favoured abundance of P. afra (% OM and EA) correlated negatively with Shannon diversity index of invaded sites which was positively influenced by % N, pH, and cation exchange capacity (CEC). At the non-invaded sites, Shannon index and density were influenced positively by % BS, pH, AP, and % N. All these observations showed that the soil factors played significant roles in the establishment of P. afra at the invaded sites, and also on the plant diversity at non-invaded sites.

 

Keywords: Invasive plants; Lafia; physico-chemical parameters; Pneumatopteris afra; wetlands 

 

ABSTRAK

Hubungan antara faktor tanah dan ciri komuniti tanaman di sebilangan tanah lembap yang diserang dan yang tidak diserang oleh Pneumatopteris afra telah dikaji. Enam puluh sampel tanah diperoleh dari enam tanah lembap yang terdiri daripada tiga yang diserang dan tiga yang tidak diserang di Lafia, Nigeria menggunakan enam puluh kuadran yang disusun pada enam transek bersaiz 200 m. Sampel yang telah dikering udara dan diayak menggunakan jaring 2 mm telah dianalisis untuk sifat fiziko-kimia yang meliputi pH, bahan organik (OM), peratus nitrogen (% N), fosforus (P), kalsium (Ca), natrium (Na), kalium (K), magnesium (Mg), keasidan tertukarkan (EA), peratus ketepuan bes (% BS), ukuran zarah, keliangan, ketumpatan pukal (BD), kekonduksian hidraulik (HC) dan kandungan kelembapan (MC) menggunakan kaedah piawai. Pengordinatan langsung dalam analisis penghubungan berkanun digunakan untuk menentukan pengaruh faktor tanah terhadap kelimpahan P. afra, kepelbagaian Shannon dan kekayaan spesies daripada kedua-dua tapak yang diserang dan tidak diserang. Kesemua tapak adalah berbeza antara satu sama lain daripada segi parameter fiziko-kimia mereka. Tapak yang diserang kelihatan lebih berasid (pH = 3.22), kurang berpasir, lebih berpori (38.11%), rendah HC (1.23) berbanding dengan tapak yang tidak diserang. Faktor tanah yang memihak kepada kelimpahan P. afra (% OM dan EA) berkorelasi secara negatif dengan indeks kepelbagaian Shannon dari tapak yang diserang, dipengaruhi secara positif oleh % N, pH dan keupayaan pertukaran kation (CEC). Pada tapak yang tidak diserang, indeks dan ketumpatan Shannon dipengaruhi secara positif oleh % BS, pH, AP dan % N. Semua pemerhatian ini menunjukkan bahawa faktor tanah memainkan peranan penting dalam penubuhan P. afra di lokasi yang diserang dan juga kepelbagaian tanaman di kawasan yang tidak diserang.

 

Kata kunci: Lafia; parameter fiziko-kimia; Pneumatopteris afra; tanah lembap; tumbuhan invasive

 

REFERENCES

Akomolafe, G.F. & Rahmad, Z.B. 2020. Wetlands invaded by Pneumatopteris afra(Christ.) Holttum are more threatened than non-invaded ones in Nigeria. Songklanakarin Journal of Science and Technology 42(4): 858-864.

Archer, N.A.L., Quinton, J.N. & Hess, T.M. 2002. Below-ground relationships of soil texture, roots and hydraulic conductivity in two-phase mosaic vegetation in South-east Spain.  Journal of Arid Environments 52(4): 535-553.

Ashman, M. & Puri, G. 2013. Essential Soil Science: A Clear and Concise Introduction to Soil Science. New York: John Wiley & Sons.

Athanase, N., Vicky, R., Jayne, M.N. & Sylvestre, H. 2013. Soil acidification and lime quality: Sources of soil acidity, its effects on plant nutrients, efficiency of lime and liming requirements. Agricultural Advances 2(9): 259-269.

Badalamenti, E., Gristina, L., Laudicina, V.A., Novara, A., Pasta, S. & La Mantia, T. 2016. The impact of Carpobrotus cfr. acinaciformis (L.) L. Bolus on soil nutrients, microbial communities structure and native plant communities in Mediterranean ecosystems. Plant and Soil 409(1-2): 19-34.

Bens, O., Wahl, N.A., Fischer, H. & Hüttl, R.F. 2007. Water infiltration and hydraulic conductivity in sandy cambisols: Impacts of forest transformation on soil hydrological properties.  European Journal of Forest Research 126(1): 101-109.

Beven, K. & Germann, P. 2013. Macropores and water flow in soils revisited.  Water Resources Research 49(6): 3071-3092.

Bodner, G., Loiskandl, W., Buchan, G. & Kaul, H.P. 2008. Natural and management-induced dynamics of hydraulic conductivity along a cover-cropped field slope. Geoderma 146(1-2): 317-325.

Bouyoucos, G.J. 1951. A recalibration of the hydrometer method for making mechanical analysis of soils. Agronomy Journal 43(9): 434-438.

Broennimann, O., Treier, U.A., Müller‐Schärer, H., Thuiller, W., Peterson, A.T. & Guisan, A. 2007. Evidence of climatic niche shift during biological invasion. Ecology Letters 10(8): 701-709.

Callaway, R.M., Thelen, G.C., Rodriguez, A. & Holben, W.E. 2004. Soil biota and exotic plant invasion. Nature 427(6976): 731.

Chapman, H.D. & Pratt, P.F. 1961. Methods of analysis for soils. Plants and Waters: 169-176.

Clark, D.B., Palmer, M.W. & Clark, D.A. 1999. Edaphic factors and the landscape‐scale distributions of tropical rain forest trees. Ecology 80(8): 2662-2675.

Czortek, P., Królak, E., Borkowska, L. & Bielecka, A. 2020. Impacts of soil properties and functional diversity on the performance of invasive plant species Solidago canadensis L. on post-agricultural wastelands. Science of The Total Environment 729: 139077.

Edwards, W.M., Shipitalo, M.J., Owens, L.B. & Norton, L.D. 1990. Effect of Lumbricus terrestris L. burrows on hydrology of continuous no-till corn fields. Geoderma 46(1-3): 73-84.

Fischer, C., Roscher, C., Jensen, B., Eisenhauer, N., Baade, J., Attinger, S., Scheu, S., Weisser, W.W., Schumacher, J. & Hildebrandt, A. 2014. How do earthworms, soil texture and plant composition affect infiltration along an experimental plant diversity gradient in grassland?  PLoS ONE 9(6): e98987.

Flowers, T.J. & Colmer, T.D. 2008. Salinity tolerance in halophytes. New Phytologist 179(4): 945-963.

Galatowitsch, S.M., Anderson, N.O. & Ascher, P.D. 1999. Invasiveness in wetland plants in temperate North America. Wetlands 19(4): 733-755.

Galloway, J.N., Dentener, F.J., Capone, D.G., Boyer, E.W., Howarth, R.W., Seitzinger, S.P., Asner, G.P., Cleveland, C.C., Green, P.A. & Holland, E.A. 2004. Nitrogen cycles: Past, present, and future. Biogeochemistry 70(2): 153-226.

Gioria, M. & Pyšek, P. 2016. The legacy of plant invasions: Changes in the soil seed bank of invaded plant communities. BioScience 66(1): 40-53.

Gibbons, S.M., Lekberg, Y., Mummey, D.L., Sangwan, N., Ramsey, P.W. & Gilbert, J.A. 2017. Invasive plants rapidly reshape soil properties in a grassland ecosystemMSystems 2(2): e00178-16.

Hammer, Ø., Harper, D.A.T. & Ryan, P.D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 1-9.

Jarvis, N.J. & Messing, I. 1995. Near-saturated hydraulic conductivity in soils of contrasting texture measured by tension infiltrometers. Soil Science Society of America Journal 59(1): 27-34.

Khairil, M., Siti-Meriam, A., Nur-Fatihah, H.N., Nashriyah, M., Razali, M.S. & Noor-Amalina, R. 2015. Association of edaphic factors with herbal plants abundance and density in a recreational forest, Terengganu, Peninsular Malaysia. Malaysia Applied Biology 44(2): 33-43.

Khairil, M., Juliana, W.A.W. & Nizam, M.S. 2014. Edaphic influences on tree species composition and community structure in a tropical watershed forest in peninsular Malaysia. Journal of Tropical Forest Science 26(2): 284-294.

Khairil, M., Juliana, W.A.W., Nizam, M.S. & Faszly, R. 2011. Community structure and biomass of tree species at Chini watershed forest, Pekan, Pahang. Sains Malaysiana 40(11): 1209-1221.

Klironomos, J.N. 2002. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417(6884): 67-70.

Kördel, W., Egli, H. & Klein, M. 2008. Transport of pesticides via macropores (IUPAC technical report).  Pure and Applied Chemistry 80(1): 105-160.

Koutika, L., Vanderhoeven, S., Chapuis-Lardy, L., Dassonville, N. & Meerts, P. 2007. Assessment of changes in soil organic matter after invasion by exotic plant species. Biology and Fertility of Soils 44(2): 331-341.

Landon, J.R. 2014. Booker Tropical Soil Manual: A Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Subtropics. London: Routledge.

Laughlin, D.C. & Abella, S.R. 2007. Abiotic and biotic factors explain independent gradients of plant community composition in ponderosa pine forests. Ecological Modelling 205(1-2): 231-240.

Liao, Q., Zhang, X., Li, Z., Pan, G., Smith, P., Jin, Y. & Wu, X. 2009. Increase in soil organic carbon stock over the last two decades in China's Jiangsu Province. Global Change Biology 15(4): 861-875.

Lin, H.S., McInnes, K.J., Wilding, L.P. & Hallmark, C.T. 1999. Effects of soil morphology on hydraulic properties I. Quantification of soil morphology.  Soil Science Society of America Journal 63(4): 948-954.

Lodge, D.M., Williams, S., MacIsaac, H.J., Hayes, K.R., Leung, B., Reichard, S., Mack, R.N., Moyle, P.B., Smith, M. & Andow, D.A. 2006. Biological invasions: Recommendations for US policy and management.  Ecological Applications 16(6): 2035-2054.

Lorenzo, P., Rodríguez-Echeverría, S., González, L. & Freitas, H. 2010. Effect of invasive Acacia dealbata link on soil microorganisms as determined by PCR-DGGE. Applied Soil Ecology 44(3): 245-251.

Maron, J.L., Vilà, M., Bommarco, R., Elmendorf, S. & Beardsley, P. 2004. Rapid evolution of an invasive plant. Ecological Monographs 74(2): 261-280.

Mitchell, C.E. & Power, A.G. 2003. Release of invasive plants from fungal and viral pathogens. Nature 421(6923): 625-627.

Normand, S., Ricklefs, R.E., Skov, F., Bladt, J., Tackenberg, O. & Svenning, J. 2011. Postglacial migration supplements climate in determining plant species ranges in Europe. Proceedings of the Royal Society B: Biological Sciences 278(1725): 3644-3653.

Obi, M.E. 1999. The physical and chemical responses of a degraded sandy clay loam soil to cover crops in southern Nigeria. Plant and Soil 211(2): 165-172.

Olsen, S.R. 1954. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. US Department of Agriculture.

Ozinga, W.A., Joop, H.J., Schaminée, R.M., Bekker, S.B., Peter, P., Oliver, T., Jan, B. & Jan, M.G. 2005. Predictability of plant species composition from environmental conditions is constrained by dispersal limitation. Oikos 108(3): 555-561.

Paoli, G.D., Curran, L.M. & Slik, J.W.F. 2008. Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia 155(2): 287-299.

Pawluk, S. & Carson, J.A. 1963. Evaluation of methods for determination of exchange acidity in soils. Canadian Journal of Soil Science 43(2): 325-335.

Pérès, G., Cluzeau, D., Menasseri, S., Soussana, J., Bessler, H., Engels, C., Habekost, M., Gleixner, G., Weigelt, A. & Weisser, W.W. 2013. Mechanisms linking plant community properties to soil aggregate stability in an experimental grassland plant diversity gradient.  Plant and Soil 373(1-2): 285-299.

Richardson, D.M., Allsopp, N., D'Antonio, C.M., Milton, S.J. & Rejmánek, M. 2000. Plant invasions-the role of mutualisms. Biological Reviews 75(1): 65-93.

Ripple, W.J. & Beschta, R.L. 2012. Trophic cascades in Yellowstone: The first 15 years after wolf reintroduction. Biological Conservation 145(1): 205-213.

Rowell, D.L. 2014. Soil Science: Methods & Applications. London: Routledge.

Russell, J.C. & Blackburn, T.M. 2017. The rise of invasive species denialism. Trends in Ecology and Evolution 32: 3-6.

Sabelis, M.W. & Crawley, M.J. 1992. Natural Enemies: The Population Biology of Predators, Parasites and Diseases. New York: John Wiley & Sons.

Schulz, M., Gauss, M., Benedictow, A., Jonson, J.E., Tsyro, S., Nyıri, A., Simpson, D., Steensen, B.M., Klein, H. & Valdebenito, A. 2013. EMEP Status Report 2011. Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe in 2011. Norway: Norwegian Meteorology Institute.

Sharma, A., Batish, D.R., Singh, H.P., Jaryan, V. & Kohli, R.K. 2017. The impact of invasive Hyptis suaveolens on the floristic composition of the periurban ecosystems of Chandigarh, northwestern India. Flora 233: 156-162.

Six, J., Bossuyt, H., Degryze, S. & Denef, K. 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics.  Soil and Tillage Research 79(1): 7-31.

Soti, P.G., Purcell, M. & Jayachandran, K. 2020. Soil biotic and abiotic conditions negate invasive species performance in native habitat. Ecological Processes 9(1): 1-9.

Teixeira, L.H., Yannelli, F.A., Ganade, G. & Kollmann, J. 2020. Functional diversity and invasive species influence soil fertility in experimental grasslands. Plants 9(1): 53.

Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F.N., De Siqueira, M.F., Grainger, A. & Hannah, L. 2004. Extinction risk from climate change. Nature 427(6970): 145-148.

Thuiller, W., Richardson, D.M., Pyšek, P., Midgley, G.F., Hughes, G.O. & Rouget, M. 2005. Niche‐based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology 11(12): 2234-2250.

Vereecken, H. 1995. Estimating the unsaturated hydraulic conductivity from theoretical models using simple soil properties. Geoderma 65(1-2): 81-92.

Walkey, A. & Black, I.A. 1934. An examination of Degtjareff method for determination of soil organic matter and a proposed modification of the chromic acid in soil analysis.  Experimental Journal of Soil Science 79: 459-465.

Wamelink, W., van Dobben, H.F., Goedhart, P.W. & Jones-Walters, L.M. 2018. The role of abiotic soil parameters as a factor in the success of invasive plant species. Emerging Science Journal 2(6): 308-365.

Wamelink, G.W.W., Goedhart, P.W. & Frissel, J.Y. 2014. Why some plant species are rare?  PLoS ONE 9(7): e102674.

Wang, N. & Chen, H. 2019. Increased nitrogen deposition increased the competitive effects of the invasive plant Aegilops tauschii on wheat. Acta Physiologiae Plantarum 41(10): 176.

Wang, R.L., Staehelin, C., Dayan, F.E., Song, Y.Y., Su, Y.J. & Zeng, R.S. 2012. Simulated acid rain accelerates litter decomposition and enhances the allelopathic potential of the invasive plant Wedelia trilobata (creeping daisy). Weed Science 60(3): 462-467.

Wardle, D.A., Bardgett, R.D., Callaway, R.M. & Van der Putten, W.H. 2011. Terrestrial ecosystem responses to species gains and losses. Science 332(6035): 1273-1277.

Weidenhamer, J.D. & Callaway, R.M. 2010. Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. Journal of Chemical Ecology 36(1): 59-69.

Wösten, J.H.M. & Van Genuchten, M.T. 1988. Using texture and other soil properties to predict the unsaturated soil hydraulic functions. Soil Science Society of America Journal 52(6): 1762-1770.

Zacharias, S. & Wessolek, G. 2007. Excluding organic matter content from pedotransfer predictors of soil water retention. Soil Science Society of America Journal 71(1): 43-50.

 

*Corresponding author; email: gfakomolafe@yahoo.com

   

 

 

previous