Sains Malaysiana 50(2)(2021): 361-371
http://dx.doi.org/10.17576/jsm-2021-5002-08
Thermal
and Mechanical Characterisation of Poly(ω -Hydroxy Pelargonate): A Preliminary Study for
Bioplastic
(Pencirian Terma dan Mekanik Poli(ω-Pelargonat Hidroksi): Kajian Awal untuk Bioplastik)
SITI FAIEZA ABD
HADI, MUHAMMAD FADHLI KAMARUZAMAN, JUMAT SALIMON & MOHD FIRDAUS
MOHD YUSOFF*
Center
for Advanced Materials and Renewable Resources, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:
4 November 2019/Accepted: 21 July 2020
ABSTRACT
Poly(ω-hydroxy pelargonate) or P(ω-OHP) is a potential
biodegradable plastic which was prepared by melt condensation of its monomer
(ω-hydroxy pelargonic acid). In this study, the performances of
P(ω-OHP) in thermal and mechanical aspects, as well as the method employed
for the monomer preparation was presented. Although this type of monomer is
well established for pharmaceutical and cosmetic application, its possibility
to be applied in bioplastic has not been extensively studied. Previous research
also showed that the monomer preparation was rather complicated, expansive, and
hazardous. Thus, this study offers the safe method through chemical
modification which conducted in mild condition. The monomer structure was
verified by using ESI-MS at 173.1 m/z with 92% purity. After melt-condensation
process was carried out at 190 °C for 4 h, the formation of P(ω-OHP) was
identified by the present of methylene ester bond indicated on 1H
NMR peak at 4.05 ppm. The thermal properties were analyzed by DSC, TGA, and
rheometer. P(ω-OHP) was melted at 72.8 °C and start to degrade at 220 °C
with rheology analysis represented Newtonian flow at 80 and 180 °C.
P(ω-OHP) contains 73.5% degree of crystallinity as determined by XRD with
fewer amorphous area has affecting low mechanical value in hardness (31) and
compressive strength (modulus 47.3 MPa, yield 1.03 MPa). The results suggest
that P(ω-OHP) is thermally stable and physically hard and brittle. The
findings have implications for bioplastic custom and subjected to improvement
via polymer blending or block co-polymerization for application flexibility.
Keywords:
Bioplastic; characterization; omega hydroxy pelargonic acid; poly(omega
hydroxy pelargonate)
ABSTRAK
Poli(ω-pelargonat hidroksi) atau P(ω-OHP) merupakan bahan yang berpotensi untuk dijadikan plastik terbiodegradasi dan telah disediakan melalui kaedah penyejatan lebur terhadap monomer (asid ω-hidroksi pelargonik). Kajian ini mempamerkan prestasi P(ω-OHP) terhadap aspek terma dan mekanik dan juga kaedah penyediaan monomer. Walaupun monomer jenis ini telah banyak diaplikasikan dalam bidang farmaseutik dan kosmetik, namun masih kurang kajian penggunaannya untuk aplikasi bioplastik. Kajian terdahulu turut melaporkan bahawa kaedah penyediaan monomer ini adalah sukar, mahal dan berbahaya. Maka, kajian ini menawarkan satu kaedah yang lebih selamat dilaksanakan melalui pengubahsuaian tindak balas kimia. Struktur monomer telah ditentusahkan menggunakan ESI-MS
pada caj 173.1 m/z dengan ketulenan 92%. Setelah proses kondensasi lebur dijalankan pada suhu 190 °C selama 4 jam, penghasilan P(ω-OHP) dikenal pasti dengan ikatan ester metilena yang ditunjukkan pada puncak 1H
NMR pada 4.05 ppm. Sifat terma dianalisis dengan DSC, TGA
dan reometer. P(ω-OHP) melebur pada suhu 72.8 °C dan mula terurai pada suhu 220 °C serta analisis reologi menunjukkan sifat aliran Newton pada suhu 80 dan 180 °C. P(ω-OHP) mengandungi 73.5% darjah pengkristalan yang telah ditentukan oleh
XRD dengan kawasan amorfus yang rendah, ia memberi kesan terhadap nilai mekanikal yang rendah dengan kekerasan (31) dan kekuatan mampatan (modulus 47.3
MPa, purata 1.03 MPa). Hasil kajian menunjukkan bahawa P(ω-OHP) adalah stabil secara terma dengan sifat fizikalnya yang keras dan rapuh. Penemuan ini menunjukkan implikasinya untuk digunakan sebagai bioplastik dan dapat ditambah baik melalui pengadunan polimer atau blok pengkopolimeran untuk kefleksibelan aplikasi.
Kata kunci: Asid omega hidroksi pelargonik; bioplastik; pencirian; poli(omega hidroksi pelargonat)
REFERENCES
Ahmed,
J., Luciano, G., Schizzi, I., Arfat,
Y.A., Maggiore, S. & Arockia, T.L.T. 2018.
Non-isothermal crystallization behavior, rheological properties and morphology
of poly(ɛ-caprolactone)/graphine oxidenanosheets composite films. Thermochimica Acta 659: 96-104.
Aoyagi,
Y., Yamashita, K. & Doi, Y. 2002. Thermal degradation of
poly[(R)-3-hydroxybutyrate], poly[ɛ-caprolactone], and poly[(S)-lactide]. Polymer Degradation and Stability 76:
53-59.
Barrett,
J.S.F. & Srienc, F. 2011. Green chemistry for the
production of biodegradable, biorenewable,
biocompatible, and polymers. Biocatalysis for Green
Chemistry and Chemical Process Development. https://doi/abs/10.1002/9781118028308.ch13.
Chae, D.W., Nam, Y.,
Sung, G.A., Chang, G.C., Lee, E.J. & Kim, B.C. 2017. Effects of molecular
architecture on the rheological and physical properties of polycaprolactone. Korea - Australia Rheology Journal 29(2): 129-135.
Cvetković, I., Milić, J., Ionescu, M. & Petrović,
Z.S. 2008. Preparation of 9-hydroxynonanoic acid methyl ester by ozonolysis of vegetable oils and its polycondensation. Hemijska Industrija 62(6): 319-328.
Ebata,
H., Toshima, K. & Matsumura, S. 2008. Lipase-catalyzed synthesis and
properties of poly[(12-hydroxydodecanoate)-co-(12-hydroxystearate)] directed
towards novel green and sustainable elastomers. Macromolecular Biosciences 8(1): 38-45.
Eshraghi, S. & Das, S.
2010. Mechanical and microstructural properties of polycaprolactone scaffolds
with one-dimensional, two-dimensional, and three-dimensional orthogonally
oriented porous architectures produced by selective laser sintering. Acta Biomaterial 6(7): 2467-2476.
Flieger, M., Kantorová, M., Prell, A., Řezanka, T. & Votruba, J. 2003. Biodegradable
plastics from renewable sources. Folia Microbiologica 48(1): 27-44.
Fore,
S.P., Ward, T.L. & Dollear, F.G. 1963. The
preparation of lauryl alcohol and 6-hydroxycaproic acid from petroselinic acid. Journal
of the American Oil Chemists' Society 40(1): 30-33.
Hadi, S.F.A. & Salimon, J. 2018. Preparation of ω-hydroxy pelargonic
acid. AIP Conference Proceedings 1940(1):
020103.
Haliru, M., Badmus, B.B., Farizul, H.K. & Dachyar, A. 2016. Screening and production of polyhydroxybutyrate (PHB) by bacterial strains isolated
from rhizosphere soil of groundnut plants. Sains Malaysiana 45(10): 1469-1476.
Huf, S., Krügener, S., Hirth, T., Rupp, S.
& Zibek, S. 2011. Biotechnological synthesis of
long‐chain dicarboxylic acids as building blocks for polymers. European Journal of Lipid Science and
Technology 113(5): 548-561.
Jose,
J., Pourfallah, G., Merkley, D., Li, S., Bouzidi, L., Leao, A.L. & Narine, S.S. 2014. Thermoplastic polyesters and
co-polyesters derived from vegetable oil: Synthesis and optimization of melt
polycondensation for medium and long chain poly(ω-hydroxyfatty acid)s and their ester derivatives. Polymer Chemistry 5(9): 3203-3213.
Karger,
K.J. 1995. Polypropylene: Structure, Bends and Composites. London:
Chapman and Hall.
Köckritz, A. & Martin,
A. 2011. Synthesis of azelaic acid from vegetable oil-based feedstocks. European Journal of Lipid Science and
Technology 113(1): 83-91.
Kula,
J., Smigielski, K., Quang, T.B., Grzelak,
I. & Sikora, M. 1999. Preparation of ω-hydroxynonanoic acid and its ester derivatives. Journal
of the American Oil Chemists Society 76(7): 811-817.
Labet, M. &
Thielemans, W. 2009. Synthesis of polycaprolactone: A review. Chemical Society Reviews 38: 3484-3504.
Liu,
G., Kong, X., Wan, H. & Narine, S. 2008.
Production of 9-hydroxynonanoic acid from methyl oleate and conversion into
lactone monomers for the synthesis of biodegradable polylactones. Biomacromolecules 9(3): 949-953.
Mat Uzir, W., Azman, H., Akos,
N.I., Nurhayati, A.Z. & Kayathre,
K. 2015. Mechanical, thermal and chemical resistance of epoxidized natural
rubber toughened polylactic acid blends. Sains Malaysiana44(11): 1615-1623.
Mehta,
R., Kumar, V., Bhunia, H. & Upadhyay, S.N. 2005.
Polymer review. Journal of Macromolecular
Science 45: 325-349.
Mitrus, M., Wojtowicz, A. & Moscicki, L.
2009. Biodegradable polymers and their
practical utility. In Thermoplastic Starch, edited by Janssen,
L.P.B.M. & Moscicki, L. Weinheim: Wiley-VCH. pp.
1-33.
Nair,
L.S. & Laurencin, C.T. 2007. Biodegradable polymers as biomaterials. Progress in Polymer Science 32(8):
762-798.
Nehra,
K., Jamdagni, P. & Lathwal,
P. 2017. Bioplastics: A sustainable approach toward healthier environment. Plant Biotechnology: Recent Advancement and
Development 15: 297-314.
Petrović, Z.S., Milić, J., Xu, Y. & Cvetković,
I. 2010. A chemical route to high molecular weight vegetable oil-based polyhydroxyalkanoate. Macromolecules 43(9): 4120-4125.
Rajabi, M., Lanfranchi, M., Campo, F. & Panza,
L. 2014. Synthesis of a series of hydroxycarboxylic acids as standards for
oxidation of nonanoic acid. Synthetic
Communications 44(8): 1149-1154.
Rudin,
A. & Choi, P. 2013. The Elements of
Polymer Science & Engineering. 3rd ed. Boston: Academic Press.
Scholz,
C. & Khemani, K. 2006. Degradable polymers and
materials. American Chemical Society 939(1):
2-11.
Sonnenberger, S.,
Lange, S., Langner, A., Neubert, R.H.H. & Dobner, B. 2016. Synthesis of ceramides Ns and Np with
perdeuterated and specifically ω deuterated N-Acyl residues. Journal of Labelled Compounds and
Radiopharmaceuticals 59(12): 531-542.
Steinbüchel, A. 2005.
Non-biodegradable biopolymers from renewable resources: Perspectives and
impacts. Current Opinion in Biotechnology 16(6): 607-613.
Tyagi,
P., Yamamoto, S. & Kawamura, K. 2015. Hydroxy fatty acids in fresh snow
samples from northern Japan: Long-range atmospheric transport of Gram-negative
bacteria by Asian winter monsoon. Biogeosciences 12: 7071-7080.
Xiang,
H., Wen, X., Miu, X., Li, Y., Zhou, Z. & Zhu, M.
2016. Thermal depolymerization mechanisms of
poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Progress in Natural Science: Materials International 26(1): 58-64.
Xiao,
K., Yue, X.H., Chen, W.C., Zhou, X.R., Wang, L., Xu, L., Huang, F.H. & Wan,
X. 2018. Metabolic engineering for enhanced medium chain omega hydroxy fatty
acid production in Escherichia coli. Frontiers in Microbiology 9: 139.
Yokota,
T. & Watanabe, A. 1990. Process for
Producing Omega - Hydroxy Fatty Acids. Nippon Mining Company Limited. http://www.google.com/patents/EP0357865A2?cl=en. Accessed on 18
April 2016.
*Corresponding
author; email: fir_my@ukm.edu.my
|