Sains Malaysiana 50(2)(2021): 493-505

http://dx.doi.org/10.17576/jsm-2021-5002-20

 

Bacterial Cellulose - Properties and Its Potential Application

(Bakteria Selulosa - Sifat dan Keupayaan Aplikasi)

 

IZABELA BETLEJ1, SARANI ZAKARIA2, KRZYSZTOF J. KRAJEWSKI1 & PIOTR BORUSZEWSKI1*

 

1Institute of Wood Sciences and Furniture, Warsaw University of Life Science – SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland

 

2Bioresources & Biorefinery Laboratory, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 29 April 2020/Accepted: 6 August 2020

 

ABSTRACT

This review paper is related to the utilization on bacterial cellulose in many applications. The polymer produced from bacterial cellulose possessed a very good physical and mechanical properties, such as high tensile strength, elasticity, absorbency. The polymer from bacterial cellulose has a significantly higher degree of polymerization and crystallinity compared to those derived from plant. The collection of selected literature review shown that bacterial cellulose produced are in the form pure cellulose and can be used in many of applications. These include application in various industries and sectors of the economy, from medicine to paper or electronic industry.

 

Keywords: Acetobacter xylinum; biocomposites; culturing; properties of bacterial cellulose

 

ABSTRAK

Ulasan kepustakaan ini adalah mengenai bakteria selulosa yang digunakan dalam banyak aplikasi. Bahan polimer yang terhasil daripada bakteria selulosa mempunyai sifat fizikal dan mekanikal yang sangat baik seperti sifat kekuatan regangan, kelenturan dan serapan. Bahan polimer terhasil daripada selulosa bakteria mempunyai darjah pempolimeran dan kehabluran yang tinggi berbanding daripada sumber tumbuhan. Suntingan kajian daripada beberapa koleksi ulasan kepustakaan menunjukkan bakteria selulosa terhasil adalah selulosa tulen yang boleh digunakan untuk banyak kegunaan. Antaranya adalah untuk pelbagai industri dan sektor ekonomi seperti perubatan atau industri elektronik.

 

Kata kunci: Acetobacter xylinum; komposit-bio; pengkulturan; sifat bakteria selulosa

 

REFERENCES

Abeer, M.M., Amin, M.C.I.M., Lazim, A.M., Pandey, M. & Martin, C. 2014. Synthesis of a novel acrylated abietic acid-G-bacterial cellulose hydrogel by gamma irradiation. Carbohydrate Polymers 110(38): 505-512.

Abushammala, H. & Mao, J. 2019. A review of the surface modifcation of cellulose and nanocellulose using aliphatic and aromatic monoand di-isocyanates. Molecules 24(15): 2782.

Amin, M.C.I.M., Abadi, A.G., Ahmad, N., Katas, H. & Jamal, J.K. 2012. Bacterial cellulose film coating as drug delivery system: Physicochemical, thermal and drug release properties. Sains Malaysiana 41(5): 561-568.

Amorim, J.D.P., Junior, C.J.G.S., Costa, A.F.S., Nascimento, H.A., Vinhas, G.M. & Sarrubo, L.A. 2020a. BioMask, a polymer blend for treatment and healing of skin prone to acne. Chemical Engineering Transaction 79(1): 205-210.

Amorim, J.D.P., de Souza, K.C., Duarte, C.R., da Silva Duarte, I., de Assis Sales Ribeiro, F., Silva, G.S., de Farias, P.M.A., Stingl, A., Costa, A.F.S., Vinhas, G.M. & Sarubbo, L.A. 2020b. Plant and bacterial nanocellulose: Production, properties and applications in medicine, food, cosmetics, electronics and engineering: A review. Environmental Chemistry Letters 18(3): 851-869.

Amorim, J.D.P., Costa, A.F.S., Galdino, C.J.S.J., Vinhas, G.M., Santos, E. & Sarubbo, L.A. 2019. Bacterial cellulose production using industrial fruit residues as subtract to industrial application. Chemical Engineering Transactions 74: 1165-1170.

Andarini, M., Mokhtaron, M., Yamin, B.M., Amin, M.C.I.M., Hassan, I. & Lazim, A.M. 2017. Aplikasi hidrogel daripada selulosa bakteria (BC-g-PAA) sebagai nanoreaktor bagi menghasilkan nanozarah ferum oksida (FeNps). Sains Malaysiana 46(10): 1789-1795.

Antolak, H. & Kręgiel, D. 2015. Bakterie kwasu octowego - taksonomia, ekologia oraz wykorzystanie przemysłowe. Żywność. Nauka. Technologia. Jakość 4(101): 21-35.

Basta, A.H. & El-Saied, H. 2009. Performance of improved bacterial cellulose application in the production of functional paper. Journal of Applied Microbiology 107(6): 2098-2107.

Bae, S., Sugano, Y. & Shoda, M. 2004. Improvement of bacterial cellulose production by addition of agar in a jar fermentor. Journal of Bioscience and Bioengineering 97(1): 33-38.

Betlej, I. 2019. Studies on the diversity of substrate composition in the culture medium of Kombucha microorganisms and its influence on the quality of synthesized cellulose. Annals of WULS SGGW Forestry and Wood Technology 108: 21-25.

Betlej, I., Salerno-Kochan, R., Krajewski, K.J., Zawadzki, J. & Boruszewski, P. 2020. The influence of culture medium components on the physical and mechanical properties of cellulose synthesized by kombucha microorganisms. BioResources 15(2): 3125-3135.

Berndt, S., Wesarg, F., Wiegand, C., Kralisch, D. & Muller, F. 2013. Antimicrobial porous hybrids consisting of bacterial nanocellulose and silver nanoparticles. Cellulose 20(2): 771-783.

Bodea, I.M., Cătunescu, G.M., Stroe, T.F., Dîrlea, S.A. & Beteg, F.I. 2019. Applications of bacterial-synthesized cellulose in veterinary medicine - A review. Acta Veterinaria Brno 88: 451-471.

Brown, A.J. 1886. XIX - The chemical action of pure cultivations of Bacterium aceti. Journal of Chemical Society Transactions 49: 172-187.

Campano, C., Merayo, N., Balea, A., Tarrés, Q., Delgado-Aguilar, M., Mutjé, P., Negro, C. & Blanco, A. 2018a. Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper. Cellulose 25(1): 269-280.

Campano, C., Merayo, N., Negro, C. & Blanco, A. 2018b. Low-fibrillated bacterial cellulose nanofibers as a sustainable additive to enhance recycled paper quality. International Journal of Biological Macromolecules 114(10): 1077-1083.

Campano, C., Merayo, N., Negro, C. & Blanco, A. 2018c. In-situ production of bacterial cellulose to economically improve recycled paper properties. International Journal of Biological Macromolecules 118(14): 1532-1541.

Castro, C., Zuluaga, R., Putaux, J.L., Caro, G., Mondragon, I. & Ganán, P. 2011. Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydrate Polymers 84(1): 96-102.

Cavicchioli, M., Corso, C.T., Coelho, F., Mendes, L., Saska, S., Soares, C.P., Souza, F.O., Franchi, L.P., Capote, T.S.O., Scarel-Caminaga, R.M., Messaddeq, Y.  & Ribeiro, S.J.L. 2015. Characterization and cytotoxic, genotoxic and mutagenic evaluations of bacterial cellulose membranes incorporated with ciprofloxacin: A potential material for use as therapeutic contact lens. World Journal of Pharmacy and Pharmaceutical Sciences 4(7): 1626-1647.

Chaiyasat, A., Jearanai, S., Moonmangmee, S., Moonmangmee, D., Christopher, L.P., Alam, M.N. & Chaiyasat, P. 2018. Novel green hydrogel material using bacterial cellulose. Oriental Journal of Chemistry 34(4): 1735-1740.

Chang, S.T., Chen, L.C., Lin, S.B. & Chen, H.H. 2012. Nano-biomaterials application: Morphology and physical properties of bacterial cellulose/gelatin composites via crosslinking. Food Hydrocolloides 27(1): 137-144.

Chantereau, G., Brown, N., Dourges, M.A., Freire, C.S.R., Silvestre, A.J.D., Sebe, G. & Coma, V. 2019. Silylation of bacterial cellulose to design membranes with intrinsic antibacterial properties. Carbohydrate Polymers 220(18): 71-78.

Chen, G., Wu, G., Chen, L., Wang, W., Hong, F.F. & Jönsson, L.J. 2019. Comparison of productivity and quality of bacterial nanocellulose synthesized using culture media based on seven sugars from biomass. Microbial Biotechnology 12(4): 677-687.

Chwala, P.R., Bajaj, I.B., Survase, S.A. & Singhal, R.S. 2009. Microbial cellulose: Fermentative production and applications. Food Technology and Biotechnology 47(2): 107-124.

Chunshom, N., Chuysinuan, P., Techasakul, S. & Ummartyotin, S. 2018. Dried-state bacterial cellulose (Acetobacter xylinum) and polyvinylalcohol-based hydrogel: An approach to a personal care material. Journal of Science: Advanced Materials and Devices 3(3): 296-302.

Ciechańska, D. 2004. Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibres & Textiles in Eastern Europe 12(4): 69-72.

Czaja, W., Krystynowicz, A., Bielecki, S. & Brown, R.M. 2006. Microbial cellulose - The natural power to heal wounds. Biomaterials 27(2): 145-151.

Dai, L., Nan, J., Tu, X., He, L., Wei, B., Xu, Ch., Xu, Y., Li, S., Wang, H. & Zhang, J. 2019. Improved thermostability and cytocompatibility of bacterial cellulose/collagen composite by collagen fibrillogenesis. Cellulose 26(11): 6713-6724.

Domskiene, J., Sederaviciute, F. & Simonaityte, J. 2019. Kombucha bacterial cellulose for sustainable fashion. International Journal of Clothing Science and Technology 31(5): 644-652.

Dutton, J.J. 1991. Coralline hydroxyapatite as an ocular implant. Ophthalmology 98(3): 370-377.

Embuscado, M.E., Marks, J.S. & be Miller, J.N. 1994. Bacterial cellulose II. Optimization of cellulose production by Acetobacter xylinum through response surface methodology.  Food Hydrocolloids 8(5): 419-430.

EP 0197748. Brown, M.R. 1991. Magnetic alteration of cellulose during its biosynthesis (European Patent).

EP0318543. Warcoin, J. 1988. Process for producing bacterial cellulose from material of plant origin (European Patent).

Fan, X., Gao, Y., He, W., Hu, H., Tian, M., Wang, K. & Pan, S. 2016. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohydrate Polymers 151(17): 1068-1072.

Fernandes, M., Gama, M., Durado, F. & Souto, A.P. 2019a. Development of novel bacterial cellulose composites for the textile and shoe industry. Microbial Biotechnology 12(4): 650-661.

Fernandes, M., Souto, A.P., Gama, M. & Dourado, F. 2019b. Bacterial cellulose and emulsified AESO biocomposites as an ecological alternative to leather. Nanomaterials 9(12): 1-18.

Fontana, J.D., Desouza, A.M., Fontana, C.K., Torriani, I.L., Moreschi, J.C., Gallotti, B.J., Desouza, S.J., Narcisco, G.P., Bichara, J.A. & Farah, L.F.X. 1990. Acetobacter cellulose pellicle as a temporary skin substitute. Applied Biochemistry and Biotechnology 24(1): 253-264.

Galdino Jr., C.J.S., Maia, A.D., Meira, H.M., Souza, T.S., Amorim, J.D.P., Almeida, F.C.G., Costa, A.F.S.  & Sarubbo, L.A. 2020. Use of a bacterial cellulose filter for the removal of oil from wastewater. Process Biochemistry 91(4): 288-296.

Gao, W.H., Chen, K.F., Yang, R.D., Yang, F. & Han, W.J. 2010. Properties of bacterial cellulose ad its influence on the physical properties of paper. BioResources 6(1): 144-153.

Garcia, C. & Pieto, M.A. 2018. Bacterial cellulose as a potential bioleather substitute for the footwear industry. Microbial Biotechnology 12(4): 582-585.

Gündüz, G., Asik, N., Aydemir, D. & Kiliç, A. 2015. Bkteriyel selüloz Űretimi ve karakterizasyonu. Ormancilk Dergisi 10(2): 1-10.

Huang, Ch., Ji, H., Guo, B., Luo, L., Xu, W., Li, J. & Xu, J. 2019. Composite nanofiber membranes of bacterial cellulose/halloysite nanotubes as lithium ion battery separators. Cellulose 26(11): 6669-6681.

Huang, Ch., Guo, H.J., Xiong, L., Wang, B., Shi, S.L., Chen, X.F., Lin, X.Q., Wang, C., Luo, J. & Chen X.D. 2016. Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohydrate Polymers 136(2): 198-202.

Hussain, Z., Sajjad, W., Khan, T. & Wahid, F. 2019. Production of bacterial cellulose from industrial wastes: A review. Cellulose 26(5): 2895-2911.

Hyun, J.Y., Mahanty, B. & Kim, C.G. 2014. Utilization of Makgeolli sludge filtrate (MSF) as low-cost substrate for bacterial cellulose production by Gluconacetobacter xylinus. Applied Biochemistry and Biotechnology 172(8): 3748-3760.

Illa, M.P., Sharma, C.S. & Khandelwal, M. 2019. Tuning the physiochemical properties of bacterial cellulose: Effect of drying conditions. Journal of Materials Science 54(18): 12024-12035.

Indriyati, Irmavati, Y. & Puspitasari, T. 2019. Comparative study of bacterial cellulose film dried using microwave and air convection heating. Journal of Engeneering and Technological Sciences 51(1): 121-132.

Jeremic, S., Djokic, L., Adjačič, V., Božinowić, N., Pavlovic, V., Manojlović, D.D., Babu, R., Senthamaraikannan, R., Rojas, O., Opsenica, I. & Nikodinovic-Runic, J. 2019. Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions. International Journal of Biological Macromolecules 15(129): 351-360.

Jiang, F., Yu, N., Lei, Y., Yuan, F., Yu, Q. & Zhong, C. 2016. Core-shell structured nanofibrous membrane as advanced separator for lithium-ion batteries. Journal of Membrane Science 510(14): 1-9.

Juncu, G., Stoica-Guzun, A., Stroescu, M., Isopencu, G. & Jinga, S.I. 2016. Drug release kinetics from carboxymethylcellulose-bacterial cellulose composite films. International Journal of Pharmaceutic 510(2): 485-492.

Jung, J.Y., Khan, T., Park, J.K. & Chang, H.N. 2007. Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter. Korean Journal of Chemical Engineering 24(2): 265-271.

Karahan, A.G., Akoğlu, A., Çakir, I., Kart, A., Çakmakçi, L., Uygun, A. & Göktepe, F. 2011. Some properties of bacterial cellulose produced by new native strain Gluconacetobacter sp. A06O2 obtained from Turkish vinegar. Polymer Science 121(3): 1823-1831.

Karimian, A., Parsian, H., Majidina, M., Rahimi, M., Mir, S.M., Kafil, H.S., Shafiei-Irannejad, V., Kheyrollah, M., Ostadi, H. & Yousefi, B. 2019. Nanocrystalline cellulose: Preparation, physicochemical properties, and applications in drug delivery systems. International Journal of Biological Macromolecules 133(13): 850-859.

Kim, J., Kim, S.W., Park, S., Lim, K.T., Seonwoo, H., Kim, Y., Hong, B.H., Choung, Y.H. & Chung, J.H. 2013. Bacterial cellulose nanofbrillar patch as a wound healing platform of tympanic membrane perforation. Advanced Healthcare Materials 2(11): 1525-1531.

Kim, J.Y., Kim, J.N., Wee, Y.J., Park, D.H. & Ryu, H.W. 2007. Bacterial cellulose production by Gluconacetobacter sp. PKY5 in a rotary biofilm contactor. Applied Biochemistry and Biotechnology 137(3): 529-537.

Kiziltas, E.E., Kiziltas, A. & Gardner, D.J. 2015. Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohydrate Polymers 124(9): 131-138.

Kołaczkowska, M., Siondalski, P., Kowalik, M.M., Pękas, R., Długa, A., Zając, W., Dederko, P., Kołodziejska, I., Malinowska-Pańczyk, E., Sienkiewicz, I., Staroszczyk, H., Śliwińska, A., Stanisławska, A., Szkodko, M., Pałczyńska, P., Jabłoński, G., Borman, A. & Wilczek, P. 2019. Assessment of the usefulness of bacterial cellulose produced by Gluconacetobacter xylinus E25 as a new biological implant. Materials Science & Engineering C 97(4): 302-312.

Krystynowicz, A., Czaja, W. & Bielecki S. 1999. Biosynteza i możliwości wykorzystania celulozy bakteryjnej. Żywność. Nauka. Technologia. Jakość 3(20): 22-34.

Kubiak, K., Kurzawa, M., Jedrzejczak-Krzepkowska, M., Ludwicka, K., Krawczyk, M., Migdalski, A., Kacprzak, M.M., Loska, D., Krystynowicz, A. & Bielecki, S. 2014. Complete genome sequence of Gluconacetobacter xylinus E25 strain-valuable and effective producer of bacterial nanocellulose. Journal of Biotechnology 176(8): 18-19.

Lazim, A.M., Osman, A.H. & Mokhtarom, M. 2018. Kebolehserapan metilena biru oleh hidrogel selulosa bakteria teradiasi gamma menggunakan isoterma Langmuir dan Freundlich. Sains Malaysiana 47(4): 715-723.

Lee, K.Y., Buldum, G., Mantalaris, A. & Bismarck, A. 2014. More than meets the eye in bacterial cellulose: Biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromolecular Bioscience 14(1): 10-32.

Lim, G.H., Lee, J., Kwon, N., Bok, S., Sim, H., Moon, K.S., Lee, S.E. & Lim, B. 2016. Fabrication of flexible magnetic papers based on bacterial cellulose and barium hexaferrite with improved mechanical properties. Electronic Materials Letters 12(5): 574-579.

Liu, K. & Catchmark, J.M. 2019. Enhanced mechanical properties of bacterial cellulose nanocomposites produced by co-culturing Gluconacetobacter hansenii and Escherichia coli under static conditions. Carbohydrate Polymers 219(17): 12-20.

Liu, M., Liu, L., Jia, S., Li, S., Zou, Y. & Zhong, C. 2018. Complete genome analysis of Gluconacetobacter xylinus CGMCC 2955 for elucidating bacterial cellulose biosynthesis and metabolic regulation. Scientific Reports 8(1): 6266.

Liu, X., Zheng, H., Li, Y., Wang, L. & Wang, C. 2019. A novel bacterial cellulose aerogel modified with PGMA via ARGET ATRP method for catalase immobilization. Fibers and Polymers 20(3): 520-526.

Liu, X., Souzandeh, H., Zheng, H., Xie, Z., Zhong, W.H. & Wang, C. 2017. Soy protein isolate/bacterial cellulose composite membranes for high efficiency particulate air filtration. Composites Science and Technology 138(1): 124-133.

Luo, H., Dong, J., Xu, X., Wang, J., Yang, Z. & Wan, Y. 2018. Exploring excellent dispersion of grapheme nanosheets in three-dimensional bacterial cellulose for ultra-strong nanocomposite hydrogels. Composites Part A: Applied Science and Manufacturing 109(6): 290-297.

Lu, T., Gao, H., Liao, B., Wu, J., Zhang, W., Huang, J., Liu, M., Huang, J., Chang, Z., Jin, M., Yi, Z. & Jiang, D. 2020. Characterization and optimization of production of bacterial cellulose from strain CGMCC 17276 based on whole-genome analysis. Carbohydrate Polymers 232(6): 1-14.

Maeda, H., Nakajima, M., Hagiwara, T., Sawaguchi, T. & Yano, S. 2006. Bacterial cellulose/silica hybrid fabricated by mimicking biocomposites. Journal of Materials Science 41(17): 5646-5656.

Mohammadkazemi, F., Khademibarangenani, R. & Koosha, M. 2019. The effect of oxidation time and concentration on physicochemical, structural, and thermal properties of bacterial nano-cellulose. Natural Polymers 61(3): 265-273.

Muñoz-García, J.C., Corbin, K.R., Hussain, H., Gabrielli, V., Koev, T., Iuga, D., Round, A.N., Mikkelsen, D., Gunning, P.A., Warren, F.J. & Khimyak, Y.Z. 2019. High molecular weight mixed-linkage glucan as a mechanical and hydration modulator of bacterial cellulose: Characterization by advanced NMR spectroscopy. BioMacromolecules 20(11): 4180-4190. 

Nakai, T., Sugano, Y., Shoda, M., Sakakibara, H., Oiwa, K., Tuzi, S., Imai, T., Suqiyama, J., Takeuchi, M., Yamauchi, D. & Mineyuki, Y. 2013. Formation of highly twisted ribbons in a carboxymethylcellulase gene-disrupted strain of a cellulose-producing bacterium. Journal of Bacteriology 195(5): 958-964.

Nie, X., Lv, P., Stanley, S.L., Wang, D., Wu, S. & Wei, Q. 2019. Ultralight nanocomposite aerogels with interpenetrating network structure of bacterial cellulose for oil absorption. Journal of Applied Polymers Science 136(39): 1-8.

P.433630 Boruszewski, P. & Betlej, I. 2020. Płyta wiórowa modyfikowana celulozą bakteryjną (Patent Application).

Pacheco, G., De Mello, C.V., Chiari-Andreo, B.G., Isaac, V.L.B., Ribeiro, S.J.L., Pecoraro, E. & Trovatti, E. 2018. Bacterial cellulose skin masksproperties and sensory tests. Journal of Cosmetic Dermatology 17(5): 840-847.

Pacheco, G., Nougeira, C.R., Meneguin, A.B., Trovatti, E., Silva, M.C.C., Machado, R.T.A., Ribeiro, S.J.L., da Silva Filho, E.C. & Barud, H.S. 2017. Development and characterization of bacterial cellulose produced by cashew tree residuces as alternative carbon source. Industrial Crop and Products 107(15): 13-19.

Pensupa, N., Leu, S.Y., Hu, Y., Du, C., Liu, H., Jing, H. & Lin, C.S.K. 2017. Recent trends in sustainable textile waste recycling methods: Current situation and future prospects. Topics in Current Chemistry 2018(76): 189-228.

PL216180 Kukowska-Kaszuba, M., Długa, A., Bobiński, D. & Wilandt, W. 2011. Sposób wytwarzania bionanocelulozy o własciwościach opatrunku na uszkodzenia skóry. (Polish Patent).

Presler, S. & Surma-Ślusarska, B. 2006. Modyfikacja roślinnych półproduktów papierniczych celulozą bakteryjną. Przemysł Chemiczny T85(8-9): 1297-1299.

Qi, G.X., Luo, M.T., Huang, C., Guo, H.J., Chen, X.F., Xiong, L. & Chen, X.D. 2017. Comparison of bacterial cellulose production by Gluconacetobacter xylinus on bagasse acid and enzymatic hydrolysates. Journal of Applied Polymer Science 134: 45066.

Ross, P., Mayer, R. & Benziman, M. 1991. Cellulose biosynthesis and function in bacteria. Microbiological Reviews 55(1): 35-58.

Santos, S.M., Carbajo, J.M., Gómez, N., Ladero, M. & Villar, J.C. 2017. Paper reinforcing by in situ growth of bacterial cellulose. Journal of Materials Science 52(10): 5882-5893.

Saska, S., Barud, H.S., Gaspar, A.M., Marchetto, R., Ribeiro, S.J. & Messaddeq, Y. 2011. Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. International Journal of Biomaterials 2011: Article ID. 175362.

Schaffner, M., Rühs, P.A., Coulter, F., Kilcher, S. & Studart, A.R. 2017. 3D printing of bacteria into functional complex materials. Science Advances 3(12): 1-9.

Sederavičiūtė, F., Bekampienė, P. & Domskienė, J. 2019. Effect of pretreatment procedure on properties of Kombucha fermented bacterial cellulose membrane. Polymer Testing 78(6): 105941.

Shoda, M. & Sugano, Y. 2005. Recent advances in bacterial cellulose production. Biotechnology and Bioprocess Engineering 10(1): 1-8.

Sijabat, E., Nuruddin, A., Aditiawati, P. & Purwasasmita, B.S. 2020. Optimization on the synthesis of bacterial nano cellulose (BNC) from banana peel waste for water filter membrane applications. Materials Research Express 7(5): 2-10.

Silveira, R.K., Coelho, A.R., Pinto, F.C., de Albuquerque, A.V., de Melo Filho, D.A. & de Andrade Aguiar, J.L. 2016. Bioprosthetic mesh of bacterial cellulose for treatment of abdominal muscle aponeurotic defect in rat model. Journal of Materials Science: Materials in Medicine 27(8): 129.

Skocaj, M. 2019. Bacterial nanocellulose in papermaking. Cellulose 26(11): 6477-6488.

Skvortsova, Z.N., Gromovykh, T.I., Grahev, V.S. & Traskin, V.Y. 2019. Physicochemical mechanics of bacterial cellulose. Colloid Journal 81(4): 366-376.

Sriplai, N., Sirima, P., Palaporn, D., Mongkolthanaruk, W., Eichhorn, S.J. & Pinitsoontorn, S. 2018. White magnetic paper based on bacterial cellulose nanocomposite. Journals of Materials Chemistry C 42(6): 11427-11435.

Stanisławska A. 2016. Bacterial nonocellulose as a microbiological derived nanomaterial. Advances in Materials Science 16(4): 45-57.

Stanisławska, A., Staroszczyk, H. & Szkodo, M. 2020. The effect of dehydration/rehydration of bacterial nanocellulose on its tensile strength and physicochemical properties. Carbohydrate Polymers 236(10): 116023. 

Stasiak-Różanska, L. & Płoska, J. 2018. Study on the use of microbial cellulose as a biocarrier for 1,3-dihydroxy-2-propanone and its potential application in industry. Polymers 10(4): 2-10.

Sunasee, R., Hemraz, U.D. & Ckless, K. 2016. Cellulose nanocrystals: A versatile nanoplatform for emerging biomedical applications. Expert Opinion on Drug Delivery 13(9): 1243-1256.

Sutherland, I.W. 1998. Novel and established applications of microbial polysaccharides. Trends Biotechnology 16(1): 41-46.

Tahara, N., Tabuchi, M., Watanabe, K., Yano, H., Morinaga, Y. & Yoshinaga, F. 1997. Degree of polymerization of cellulose from Acetohacter xylinum BPR2001 decreased by cellulase produced by the strain. Bioscience, Biotechnology and Biochemistry 61(11): 1862-1865.

Tanaka, M.L., Vest, N., Ferguson, C.M. & Gatenholm, P. 2014. Comparison of biomechanical properties of native menisci and bacterial cellulose implant. International Journal of Polymeric Materials and Polymeric Biomaterials63(17): 891-897.

Torgbo, S. & Sukyai, P. 2018. Bacterial cellulose-based scaffold materials for bone tissue engineering. Applied Materials Today 11(2): 34-49.

Torres, F.G., Arroyo, J.J. & Troncoso, O.P. 2019. Bacterial cellulose nanocomposites: An all-nano type of material. Materials Science & Engineering C 98(5): 1277-1293.

Toyosaki, H., Naritomi, T., Seto, A., Matsuoka, M., Tsuchida, T. & Yoshinaga, F. 1995.  Screening of bacterial cellulose producing Acetobacter strains suitable for agitated culture. Bioscience, Biotechnology and Biochemistry 59(8): 1498-1502.

Ullah, H., Wahid, F., Santos, H.A. & Khan, T. 2016. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydrate Polymers 150(16): 330-352.

Urbina, L., Corcuera, M.A., Eceiza, A. & Retei, A. 2019. Stiff-all bacterialcellulose nanopaper with enhanced mechanical and barrier properties. Materials Letters 246(13): 67-70.

Urbina, L., Guaresti, O., Requies, J., Gabilondo, N., Eceiza, A., Corcuera, M.A. & Retegi, A. 2018. Design of reusable novel membranes based on bacterial cellulose and chitosan for the filtration of copper in wastewaters. Carbohydrate Polymers 193(15): 362-372.

US4891317. Brown Jr., R.M., Brown, D.S. & Gretz, M.R. 1990. Magnetic alternation cellulose during its biosynthesis (US Patent).

US5846213. Wai-Kei, W. 1998. Cellulose membrane and method for manufacture thereof. (US Patent).

Wacikowski, B. & Michałowski, M. 2020. The possibility of using bacterial cellulose in particleboard technology. Annals of WULS SGGW Forestry and Wood Technology 109: 16-23.

Wang, J., Tavakoli, J. & Tang, Y. 2019. Bacterial cellulose production, properties and applications with different culture methods - A review. Carbohydrate Polymers 219(17): 63-76.

Watanabe, K., Tabuchi, M., Morinaga, Y. & Yoshinaga, F. 1998. Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5(3): 187-200.

Vazquez, A., Foresti, M.L., Cerrutti, P. & Galvagno, M. 2013. Bacterial cellulose from simple and low-cost production media by Gluconacetobacter xylinus. Journal of Polymers and Environment 21(2): 545-554.

Vigentini, I., Fabrizio, V., Dellacà, F., Rossi, S., Azario, I., Mondi, C., Benaglia, M. & Foschino, R. 2019. Set-up of bacterial cellulose production from the genus
Komagataeibacter and its use in a gluten-free bakery product as a case study. Frontiers in Microbiology 10: 1-13.

Yamada, Y., Yukphan, P., Lan Vu, H.T., Maramatsu, Y., Tanasupawat, S. & Nakagawa, Y.  2012. Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). Journal of General and Applied Microbiology 58(5): 397-404.

Yang, G., Xie, J., Hong, F., Cao, Z. & Yang, X. 2012. Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: Effect of fermentation carbon sources of bacterial cellulose. Carbohydrate Polymers 87(1): 839-845.

Yang, X.Y., Huang, C., Guo, H.J., Xiong, L., Luo, J., Wang, B., Lin, X.Q., Chen, X.F. & Chen, X.D. 2016. Bacterial cellulose production from the litchi extract by Gluconacetobacter xylinus. Preprative Biochemistry & Biotechnolology 46(1): 39-43.

Ye, S., Jiang, L., Su, Ch., Zhu, Z., Wen, Y. & Shao, W. 2019. Development of gelatin/bacterial cellulose composite sponges as potential natural wound dressings. International Journal of Biological Macromolecules 133(11): 148-155.

Yim, S.M., Song, J.E. & Kim, H.R. 2017. Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar. Process Biochemistry 59(8): 26-36.

Yoshino, A., Tabuchi, M., Uo, M., Tatsumi, H., Hideshima, K., Kondo, S. & Sekine, J. 2013. Applicability of bacterial cellulose as an alternative to paper points in endodontic treatment. Acta Biomaterialia 9(4): 6116-6122.

Yuen, J.D., Shriver-Lake, L.C., Walper, S.A., Zabetakis, D., Breger, J.C. & Stenger, D.A. 2020. Microbial nanocellulose printed circuit boards for medical sensing. Sensors 20(1): 1-12.

Xiang, Z., Jin, X., Liu, Q., Cheng, Y., Li, J. & Lu, F. 2017a. The reinforcement mechanism of bacterial cellulose on paper made from woody and nonwoody fiber sources. Cellulose 24(11): 5147-5156.

Xiang, Z., Liu, Q., Chen, Y. & Lu, F. 2017b. Effects of physical and chemical structures of bacterial cellulose on its enhancement to paper physical properties. Cellulose 24(11): 3513-3523.

Zhao, H., Xia, J., Wang, J., Yan, X., Wang, C., Lei, T., Xian, M. & Zhang, H. 2018. Production of bacterial cellulose using polysaccharide fermentation wastewater as inexpensive nutrient sources. Biotechnology & Biotechnological Equipment 32(2): 350-356.

Zhang, H., Jia, S., Wan, T., Jia, Y., Yang, H., Yan, L. & Zhong, C. 2011. Biosynthesis of spherical Fe3O4/bacterial cellulose nanocomposites as adsorbents for heavy metal ions.

 

*Corresponding author; email: piotr_boruszewski@sggw.edu.pl

   

 

 

previous