| Sains Malaysiana 50(2)(2021): 493-505
                
         http://dx.doi.org/10.17576/jsm-2021-5002-20
            
           
             
           Bacterial
            Cellulose - Properties and Its Potential Application
            
           (Bakteria
            Selulosa - Sifat dan Keupayaan Aplikasi)
            
           
             
           IZABELA BETLEJ1,
            SARANI ZAKARIA2, KRZYSZTOF J. KRAJEWSKI1 & PIOTR
            BORUSZEWSKI1*
  
           
             
           1Institute of Wood Sciences and Furniture, Warsaw
            University of Life Science – SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
  
           
             
           2Bioresources & Biorefinery Laboratory,
            Department of Applied Physics, Faculty of Science and Technology, Universiti
            Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
            
           
             
           Received: 29 April
            2020/Accepted: 6 August 2020
            
           
             
           ABSTRACT
            
           This review paper is related to
            the utilization on bacterial cellulose in many applications. The polymer produced
            from bacterial cellulose possessed a very good physical and mechanical
            properties, such as high tensile strength, elasticity, absorbency. The polymer
            from bacterial cellulose has a significantly higher degree of polymerization
            and crystallinity compared to those derived from plant. The collection of
            selected literature review shown that bacterial cellulose produced are in the
            form pure cellulose and can be used in many of applications. These include
            application in various industries and sectors of the economy, from medicine to
            paper or electronic industry.
  
 
             
           Keywords: Acetobacter
            xylinum; biocomposites; culturing; properties of bacterial cellulose
  
 
             
           ABSTRAK
            
           Ulasan kepustakaan ini adalah mengenai bakteria
            selulosa yang digunakan dalam banyak aplikasi. Bahan polimer yang terhasil
            daripada bakteria selulosa mempunyai sifat fizikal dan mekanikal yang sangat
            baik seperti sifat kekuatan regangan, kelenturan dan serapan. Bahan polimer
            terhasil daripada selulosa bakteria mempunyai darjah pempolimeran dan kehabluran
            yang tinggi berbanding daripada sumber tumbuhan. Suntingan kajian daripada
            beberapa koleksi ulasan kepustakaan menunjukkan bakteria selulosa terhasil
            adalah selulosa tulen yang boleh digunakan untuk banyak kegunaan. Antaranya
            adalah untuk pelbagai industri dan sektor ekonomi seperti perubatan atau
            industri elektronik.
  
 
             
           Kata
            kunci: Acetobacter
              xylinum; komposit-bio; pengkulturan;
                sifat bakteria selulosa
  
 
             
           REFERENCES
            
           Abeer, M.M., Amin, M.C.I.M., Lazim, A.M., Pandey, M. & Martin,
            C. 2014. Synthesis              of a novel acrylated abietic acid-G-bacterial cellulose hydrogel by gamma
              irradiation. Carbohydrate Polymers 110(38):
              505-512.
  
 Abushammala, H. & Mao, J. 2019. A review of the surface
            modifcation of cellulose and nanocellulose using aliphatic and aromatic monoand
            di-isocyanates. Molecules 24(15):
            2782.
  
 Amin,
            M.C.I.M., Abadi, A.G., Ahmad, N., Katas, H. & Jamal, J.K. 2012. Bacterial cellulose film coating as drug delivery
            system: Physicochemical, thermal and drug release properties. Sains Malaysiana 41(5): 561-568.
  
           Amorim,
            J.D.P., Junior, C.J.G.S., Costa, A.F.S., Nascimento, H.A., Vinhas, G.M. &
            Sarrubo, L.A. 2020a. BioMask, a polymer blend for
              treatment and healing of skin prone to acne. Chemical Engineering Transaction 79(1): 205-210.
  
 Amorim,
            J.D.P., de Souza, K.C., Duarte, C.R., da Silva Duarte, I., de Assis Sales Ribeiro, F., Silva, G.S., de Farias, P.M.A.,
              Stingl, A., Costa, A.F.S., Vinhas, G.M. &
                Sarubbo, L.A. 2020b. Plant and bacterial
                  nanocellulose: Production, properties and applications in medicine, food,
                  cosmetics, electronics and engineering: A review. Environmental Chemistry Letters 18(3): 851-869.
  
 Amorim, J.D.P., Costa, A.F.S., Galdino, C.J.S.J., Vinhas, G.M.,
            Santos, E. & Sarubbo, L.A. 2019. Bacterial cellulose production
              using industrial fruit residues as subtract to industrial application. Chemical Engineering Transactions 74:
              1165-1170.
  
 Andarini,
            M., Mokhtaron, M., Yamin, B.M., Amin, M.C.I.M., Hassan, I. & Lazim, A.M.
            2017. Aplikasi hidrogel daripada selulosa bakteria (BC-g-PAA) sebagai nanoreaktor
            bagi menghasilkan nanozarah ferum oksida (FeNps). Sains Malaysiana 46(10): 1789-1795.
  
           Antolak,
            H. & Kręgiel, D. 2015. Bakterie
              kwasu octowego - taksonomia, ekologia oraz wykorzystanie przemysłowe. Żywność. Nauka. Technologia.
                Jakość 4(101): 21-35.
  
           Basta,
            A.H. & El-Saied, H. 2009. Performance of improved bacterial cellulose
            application in the production of functional paper. Journal of Applied Microbiology 107(6): 2098-2107.
  
           Bae,
            S., Sugano, Y. & Shoda, M. 2004. Improvement of bacterial cellulose
            production by addition of agar in a jar fermentor. Journal of Bioscience and Bioengineering 97(1): 33-38.
  
           Betlej,
            I. 2019. Studies on the diversity of substrate composition in the culture
            medium of Kombucha microorganisms and its influence on the quality of synthesized
            cellulose. Annals
              of WULS SGGW Forestry and Wood Technology 108: 21-25.
  
           Betlej, I., Salerno-Kochan, R., Krajewski, K.J., Zawadzki, J.
  & Boruszewski, P. 2020. The influence of culture medium components on the
            physical and mechanical properties of cellulose synthesized by kombucha
            microorganisms. BioResources 15(2):
            3125-3135.
  
           Berndt, S., Wesarg, F., Wiegand, C., Kralisch, D. & Muller, F.
            2013. Antimicrobial porous hybrids consisting of bacterial nanocellulose and
            silver nanoparticles. Cellulose 20(2): 771-783.
  
           Bodea, I.M., Cătunescu, G.M., Stroe, T.F., Dîrlea, S.A. &
            Beteg, F.I. 2019. Applications of
              bacterial-synthesized cellulose in veterinary medicine - A review. Acta Veterinaria Brno 88: 451-471.
  
           Brown, A.J. 1886.
            XIX - The chemical action of pure cultivations of Bacterium aceti. Journal of Chemical Society
              Transactions 49: 172-187.
  
 Campano, C., Merayo, N., Balea, A., Tarrés, Q., Delgado-Aguilar,
            M., Mutjé, P., Negro, C. & Blanco, A. 2018a. Mechanical and chemical
            dispersion of nanocelluloses to improve their reinforcing effect on recycled
            paper. Cellulose 25(1): 269-280.
  
           Campano, C., Merayo, N., Negro, C. & Blanco, A. 2018b.
            Low-fibrillated bacterial cellulose nanofibers as a sustainable additive to
            enhance recycled paper quality. International
              Journal of Biological Macromolecules 114(10): 1077-1083.
  
           Campano, C., Merayo, N., Negro, C. & Blanco, A. 2018c. In-situ production of bacterial cellulose to economically improve recycled paper
            properties. International Journal of
              Biological Macromolecules 118(14): 1532-1541.
  
           Castro,
            C., Zuluaga, R., Putaux, J.L., Caro, G., Mondragon, I. & Ganán, P. 2011.
            Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from
            Colombian agroindustrial wastes. Carbohydrate
              Polymers 84(1): 96-102.
  
           Cavicchioli,
            M., Corso, C.T., Coelho, F., Mendes, L., Saska, S., Soares, C.P., Souza, F.O.,
            Franchi, L.P., Capote, T.S.O., Scarel-Caminaga, R.M., Messaddeq, Y.  & Ribeiro, S.J.L. 2015. Characterization
            and cytotoxic, genotoxic and mutagenic evaluations of bacterial cellulose
            membranes incorporated with ciprofloxacin: A potential material for use as
            therapeutic contact lens. World
              Journal of Pharmacy and Pharmaceutical Sciences 4(7): 1626-1647.
  
 Chaiyasat, A., Jearanai, S., Moonmangmee, S.,
            Moonmangmee, D., Christopher, L.P., Alam, M.N. & Chaiyasat, P. 2018. Novel green hydrogel material using bacterial cellulose. Oriental Journal of Chemistry 34(4):
            1735-1740.
  
 Chang,
            S.T., Chen, L.C., Lin, S.B. & Chen, H.H. 2012. Nano-biomaterials
            application: Morphology and physical properties of bacterial cellulose/gelatin
            composites via crosslinking. Food
              Hydrocolloides 27(1): 137-144.
  
           Chantereau, G., Brown, N., Dourges, M.A., Freire, C.S.R., Silvestre, A.J.D., Sebe, G. &
            Coma, V. 2019. Silylation of bacterial cellulose to
              design membranes with intrinsic antibacterial properties. Carbohydrate Polymers 220(18): 71-78.
  
 Chen,
            G., Wu, G., Chen, L., Wang, W., Hong, F.F. & Jönsson, L.J. 2019. Comparison
            of productivity and quality of bacterial nanocellulose synthesized using
            culture media based on seven sugars from biomass. Microbial Biotechnology 12(4): 677-687.
  
           Chwala,
            P.R., Bajaj, I.B., Survase, S.A. & Singhal, R.S. 2009. Microbial cellulose: Fermentative production
              and applications. Food Technology and
                Biotechnology 47(2): 107-124.
  
 Chunshom, N., Chuysinuan,
            P., Techasakul, S. & Ummartyotin, S. 2018.
              Dried-state bacterial cellulose (Acetobacter
                xylinum) and polyvinylalcohol-based hydrogel: An approach to a personal
              care material. Journal of Science:
                Advanced Materials and Devices 3(3): 296-302.
  
 Ciechańska,
            D. 2004. Multifunctional bacterial
              cellulose/chitosan composite materials              for medical applications. Fibres
  & Textiles in Eastern Europe 12(4): 69-72.
  
           Czaja,
            W., Krystynowicz, A., Bielecki, S. & Brown, R.M. 2006. Microbial cellulose
            - The natural power to heal wounds. Biomaterials 27(2): 145-151.
  
           Dai,
            L., Nan, J., Tu, X., He, L., Wei, B., Xu, Ch., Xu, Y., Li, S., Wang, H. &
            Zhang, J. 2019. Improved thermostability and
              cytocompatibility of bacterial cellulose/collagen composite by collagen
              fibrillogenesis. Cellulose 26(11):
              6713-6724.
  
 Domskiene,
            J., Sederaviciute, F. & Simonaityte, J. 2019. Kombucha bacterial cellulose
            for sustainable fashion. International
              Journal of Clothing Science and Technology 31(5): 644-652.
  
 Dutton,
            J.J. 1991. Coralline hydroxyapatite as an ocular implant. Ophthalmology
            98(3): 370-377.
  
           Embuscado,
            M.E., Marks, J.S. & be Miller, J.N. 1994.
            Bacterial cellulose II. Optimization
              of cellulose production by Acetobacter xylinum through response surface
              methodology.  Food Hydrocolloids 8(5): 419-430.
  
           EP
            0197748. Brown, M.R. 1991. Magnetic alteration of cellulose during its
            biosynthesis (European Patent).
            
           EP0318543.
            Warcoin, J. 1988. Process for producing bacterial cellulose from material of
            plant origin (European Patent).
            
           Fan,
            X., Gao, Y., He, W., Hu, H., Tian, M., Wang, K. & Pan, S. 2016. Production of nano bacterial cellulose from beverage industrial
              waste of citrus peel and pomace using Komagataeibacter
                xylinus. Carbohydrate Polymers 151(17): 1068-1072.
  
 Fernandes,
            M., Gama, M., Durado, F. & Souto, A.P. 2019a. Development
              of novel bacterial cellulose composites for the textile and shoe industry. Microbial Biotechnology 12(4):
            650-661.
  
           Fernandes,
            M., Souto, A.P., Gama, M. & Dourado, F. 2019b. Bacterial cellulose and emulsified AESO
              biocomposites as an ecological alternative to leather. Nanomaterials 9(12): 1-18.
  
 Fontana,
            J.D., Desouza, A.M., Fontana, C.K., Torriani, I.L., Moreschi, J.C., Gallotti,
            B.J., Desouza, S.J., Narcisco, G.P., Bichara, J.A. & Farah, L.F.X. 1990. Acetobacter cellulose pellicle as a
            temporary skin substitute. Applied
              Biochemistry and Biotechnology 24(1): 253-264.
  
           Galdino Jr., C.J.S., Maia, A.D., Meira, H.M., Souza, T.S., Amorim,
            J.D.P., Almeida, F.C.G., Costa, A.F.S.  & Sarubbo, L.A. 2020. Use of a bacterial cellulose filter for the
            removal of oil from wastewater. Process
              Biochemistry 91(4): 288-296.
  
 Gao, W.H., Chen, K.F., Yang, R.D., Yang, F. & Han, W.J. 2010.
            Properties of bacterial cellulose ad its influence on the physical properties
            of paper. BioResources 6(1): 144-153.
  
           Garcia,
            C. & Pieto, M.A. 2018. Bacterial cellulose as a potential bioleather
            substitute for the footwear industry. Microbial
              Biotechnology 12(4): 582-585.
  
           Gündüz,
            G., Asik, N., Aydemir, D. & Kiliç, A. 2015. Bkteriyel selüloz Űretimi
            ve karakterizasyonu. Ormancilk Dergisi 10(2): 1-10.
  
 Huang, Ch., Ji,
            H., Guo, B., Luo, L., Xu, W., Li, J. & Xu, J. 2019. Composite nanofiber membranes of bacterial cellulose/halloysite
              nanotubes as lithium ion battery separators. Cellulose 26(11): 6669-6681.
  
 Huang,
            Ch., Guo, H.J., Xiong, L., Wang, B., Shi, S.L., Chen, X.F., Lin, X.Q., Wang,
            C., Luo, J. & Chen X.D. 2016. Using wastewater
              after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohydrate Polymers 136(2): 198-202.
  
 Hussain,
            Z., Sajjad, W., Khan, T. & Wahid, F. 2019. Production
              of bacterial cellulose from industrial wastes: A review. Cellulose 26(5): 2895-2911.
  
 Hyun, J.Y., Mahanty, B. & Kim, C.G. 2014. Utilization of
            Makgeolli sludge filtrate (MSF) as low-cost substrate for bacterial cellulose
            production by Gluconacetobacter xylinus. Applied Biochemistry and Biotechnology 172(8): 3748-3760.
  
 Illa,
            M.P., Sharma, C.S. & Khandelwal, M. 2019. Tuning the physiochemical
            properties of bacterial cellulose: Effect of drying conditions. Journal of Materials Science 54(18):
            12024-12035.
  
           Indriyati,
            Irmavati, Y. & Puspitasari, T. 2019. Comparative study of bacterial cellulose film dried using microwave and
              air convection heating. Journal of
                Engeneering and Technological Sciences 51(1): 121-132.
  
           Jeremic,
            S., Djokic, L., Adjačič, V., Božinowić, N., Pavlovic, V.,
            Manojlović, D.D., Babu, R., Senthamaraikannan,
              R., Rojas, O., Opsenica, I. & Nikodinovic-Runic,
                J. 2019. Production of bacterial nanocellulose (BNC) and its application as a
                solid support in transition metal catalysed cross-coupling reactions. International Journal of Biological
                  Macromolecules 15(129): 351-360.
  
           Jiang, F., Yu, N., Lei, Y., Yuan, F., Yu, Q. & Zhong, C. 2016.
            Core-shell structured nanofibrous membrane as advanced separator for
            lithium-ion batteries. Journal of
              Membrane Science 510(14): 1-9.
  
           Juncu,
            G., Stoica-Guzun, A., Stroescu, M., Isopencu, G. & Jinga, S.I. 2016. Drug
            release kinetics from carboxymethylcellulose-bacterial cellulose composite
            films. International Journal of
              Pharmaceutic 510(2): 485-492.
  
           Jung, J.Y., Khan, T., Park, J.K. & Chang, H.N. 2007.
            Production of bacterial cellulose by Gluconacetobacter
              hansenii using a novel bioreactor equipped with a spin filter. Korean Journal of Chemical Engineering 24(2): 265-271.
  
           Karahan,
            A.G., Akoğlu, A., Çakir, I., Kart, A., Çakmakçi, L., Uygun, A. &
            Göktepe, F. 2011. Some
              properties of bacterial cellulose produced by new native strain Gluconacetobacter sp. A06O2 obtained from Turkish vinegar. Polymer
                Science 121(3): 1823-1831.
  
 Karimian,
            A., Parsian, H., Majidina, M., Rahimi, M., Mir, S.M., Kafil, H.S., Shafiei-Irannejad,
            V., Kheyrollah, M., Ostadi, H. & Yousefi, B. 2019. Nanocrystalline
            cellulose: Preparation, physicochemical properties, and applications in drug
            delivery systems. International Journal
              of Biological Macromolecules 133(13): 850-859.
  
           Kim, J., Kim, S.W., Park, S., Lim, K.T., Seonwoo, H., Kim, Y.,
            Hong, B.H., Choung, Y.H. & Chung, J.H. 2013. Bacterial cellulose nanofbrillar patch as a
              wound healing platform of tympanic membrane perforation. Advanced Healthcare Materials 2(11): 1525-1531.
  
 Kim,
            J.Y., Kim, J.N., Wee, Y.J., Park, D.H. & Ryu, H.W. 2007. Bacterial
            cellulose production by Gluconacetobacter sp. PKY5 in a rotary biofilm
            contactor. Applied Biochemistry and Biotechnology 137(3): 529-537.
  
           Kiziltas,
            E.E., Kiziltas, A. & Gardner, D.J. 2015. Synthesis
              of bacterial cellulose using hot water extracted wood sugars. Carbohydrate Polymers 124(9): 131-138.
  
 Kołaczkowska,
            M., Siondalski, P., Kowalik, M.M., Pękas, R., Długa, A., Zając,
            W., Dederko, P., Kołodziejska, I., Malinowska-Pańczyk, E., Sienkiewicz,
            I., Staroszczyk, H., Śliwińska, A., Stanisławska, A., Szkodko,
            M., Pałczyńska, P., Jabłoński, G., Borman, A. &
            Wilczek, P. 2019. Assessment of the usefulness of
              bacterial cellulose produced by Gluconacetobacter xylinus E25 as a new
              biological implant. Materials Science
  & Engineering C 97(4): 302-312.
  
 Krystynowicz, A., Czaja, W. & Bielecki S. 1999. Biosynteza i możliwości
            wykorzystania celulozy bakteryjnej. Żywność.
              Nauka. Technologia. Jakość 3(20): 22-34.
  
 Kubiak, K., Kurzawa, M., Jedrzejczak-Krzepkowska, M., Ludwicka,
            K., Krawczyk, M., Migdalski, A., Kacprzak, M.M., Loska, D., Krystynowicz, A.
  & Bielecki, S. 2014. Complete genome sequence of Gluconacetobacter xylinus E25 strain-valuable and effective
            producer of bacterial nanocellulose. Journal
              of Biotechnology 176(8): 18-19.
  
           Lazim,
            A.M., Osman, A.H. & Mokhtarom, M. 2018. Kebolehserapan metilena biru oleh
            hidrogel selulosa bakteria teradiasi gamma menggunakan isoterma Langmuir dan
            Freundlich. Sains Malaysiana 47(4):
            715-723.
  
           Lee, K.Y., Buldum, G., Mantalaris, A. & Bismarck, A. 2014.
            More than meets the eye in bacterial cellulose: Biosynthesis, bioprocessing,
            and applications in advanced fiber composites. Macromolecular Bioscience 14(1): 10-32.
  
           Lim, G.H., Lee, J., Kwon, N., Bok, S., Sim, H., Moon, K.S., Lee,
            S.E. & Lim, B. 2016. Fabrication of flexible magnetic papers based on
            bacterial cellulose and barium hexaferrite with improved mechanical properties. Electronic Materials Letters 12(5):
            574-579.
  
           Liu, K. &
            Catchmark, J.M. 2019. Enhanced mechanical properties
              of bacterial cellulose nanocomposites produced by co-culturing Gluconacetobacter hansenii and Escherichia coli under static
              conditions. Carbohydrate Polymers 219(17): 12-20.
  
 Liu, M., Liu, L., Jia, S., Li, S., Zou, Y. & Zhong, C. 2018.
            Complete genome analysis of Gluconacetobacter
              xylinus CGMCC 2955 for elucidating bacterial cellulose biosynthesis and
            metabolic regulation. Scientific Reports 8(1): 6266.
  
           Liu, X., Zheng, H., Li, Y., Wang, L. & Wang, C. 2019. A novel
            bacterial cellulose aerogel modified with PGMA via ARGET ATRP method for
            catalase immobilization. Fibers and
              Polymers 20(3): 520-526.
  
           Liu, X., Souzandeh, H., Zheng, H., Xie, Z., Zhong, W.H. &
            Wang, C. 2017. Soy protein isolate/bacterial cellulose composite membranes for
            high efficiency particulate air filtration. Composites
              Science and Technology 138(1): 124-133.
  
           Luo,
            H., Dong, J., Xu, X., Wang, J., Yang, Z. & Wan, Y. 2018. Exploring
            excellent dispersion of grapheme nanosheets in three-dimensional bacterial
            cellulose for ultra-strong nanocomposite hydrogels. Composites Part A: Applied Science and Manufacturing 109(6): 290-297.
  
           Lu, T., Gao, H.,
            Liao, B., Wu, J., Zhang, W., Huang, J., Liu, M., Huang, J., Chang, Z., Jin, M.,
            Yi, Z. & Jiang, D. 2020. Characterization and
              optimization of production of bacterial cellulose from strain CGMCC 17276 based
              on whole-genome analysis. Carbohydrate
                Polymers 232(6): 1-14.
  
 Maeda,
            H., Nakajima, M., Hagiwara, T., Sawaguchi, T. & Yano, S. 2006. Bacterial
            cellulose/silica hybrid fabricated by mimicking biocomposites. Journal of Materials Science 41(17):
            5646-5656.
  
           Mohammadkazemi, F., Khademibarangenani,
            R. & Koosha, M. 2019. The effect of oxidation time and concentration on
            physicochemical, structural, and thermal properties of bacterial
            nano-cellulose. Natural Polymers 61(3): 265-273.
  
 Muñoz-García,
            J.C., Corbin, K.R., Hussain, H., Gabrielli, V., Koev, T., Iuga, D., Round,
            A.N., Mikkelsen, D., Gunning, P.A., Warren, F.J. & Khimyak, Y.Z. 2019. High molecular weight mixed-linkage glucan as a mechanical
              and hydration modulator of bacterial cellulose: Characterization by advanced
              NMR spectroscopy. BioMacromolecules 20(11): 4180-4190.  
  
           Nakai, T., Sugano, Y., Shoda, M., Sakakibara, H., Oiwa, K., Tuzi,
            S., Imai, T., Suqiyama, J., Takeuchi, M., Yamauchi, D. & Mineyuki, Y. 2013.
            Formation of highly twisted ribbons in a carboxymethylcellulase gene-disrupted
            strain of a cellulose-producing bacterium. Journal
              of Bacteriology 195(5): 958-964.
  
           Nie,
            X., Lv, P., Stanley, S.L., Wang, D., Wu, S. & Wei, Q. 2019. Ultralight nanocomposite aerogels with interpenetrating
              network structure of bacterial cellulose for oil absorption. Journal of Applied Polymers Science 136(39): 1-8.
  
 P.433630
            Boruszewski, P. & Betlej, I. 2020. Płyta wiórowa modyfikowana
            celulozą bakteryjną (Patent Application).
  
           Pacheco, G., De Mello, C.V., Chiari-Andreo, B.G., Isaac, V.L.B., Ribeiro, S.J.L., Pecoraro, E. & Trovatti, E. 2018. Bacterial cellulose skin masksproperties
            and sensory tests. Journal of Cosmetic
              Dermatology 17(5): 840-847.
  
           Pacheco,
            G., Nougeira, C.R., Meneguin, A.B., Trovatti, E., Silva, M.C.C., Machado,
            R.T.A., Ribeiro, S.J.L., da Silva Filho, E.C. & Barud, H.S. 2017.
            Development and characterization of bacterial cellulose produced by cashew tree
            residuces as alternative carbon source. Industrial
              Crop and Products 107(15): 13-19.
  
           Pensupa, N., Leu, S.Y., Hu, Y., Du, C., Liu, H., Jing, H. &
            Lin, C.S.K. 2017. Recent trends in sustainable textile waste recycling methods:
            Current situation and future prospects. Topics
              in Current Chemistry 2018(76): 189-228.
  
           PL216180
            Kukowska-Kaszuba, M., Długa, A., Bobiński, D. & Wilandt, W. 2011.
            Sposób wytwarzania bionanocelulozy o własciwościach opatrunku na
            uszkodzenia skóry. (Polish Patent).
  
           Presler, S. & Surma-Ślusarska, B. 2006. Modyfikacja
            roślinnych półproduktów papierniczych celulozą bakteryjną. Przemysł Chemiczny T85(8-9):
            1297-1299.
  
           Qi, G.X., Luo, M.T., Huang, C., Guo, H.J., Chen, X.F., Xiong, L.
  & Chen, X.D. 2017. Comparison of bacterial cellulose production by Gluconacetobacter xylinus on bagasse
            acid and enzymatic hydrolysates. Journal
              of Applied Polymer Science 134: 45066.
  
           Ross, P., Mayer, R. & Benziman, M. 1991. Cellulose
            biosynthesis and function in bacteria. Microbiological
              Reviews 55(1): 35-58.
  
 Santos, S.M., Carbajo, J.M., Gómez, N., Ladero, M. & Villar,
            J.C. 2017. Paper reinforcing by in situ growth of bacterial cellulose. Journal of Materials Science 52(10):
            5882-5893.
  
           Saska, S., Barud, H.S., Gaspar, A.M., Marchetto, R., Ribeiro, S.J.
  & Messaddeq, Y. 2011. Bacterial cellulose-hydroxyapatite nanocomposites for
            bone regeneration. International Journal
              of Biomaterials 2011: Article ID. 175362.
  
           Schaffner,
            M., Rühs, P.A., Coulter, F., Kilcher, S. & Studart, A.R. 2017. 3D printing
            of bacteria into functional complex materials. Science Advances 3(12): 1-9.  Sederavičiūtė, F., Bekampienė, P. &
            Domskienė, J. 2019. Effect of pretreatment procedure on properties of
            Kombucha fermented bacterial cellulose membrane. Polymer Testing 78(6): 105941.
              
 
            
          Shoda,
            M. & Sugano, Y. 2005. Recent advances in bacterial cellulose production. Biotechnology and Bioprocess Engineering 10(1): 1-8.
            
           Sijabat,
            E., Nuruddin, A., Aditiawati, P. & Purwasasmita,
              B.S. 2020. Optimization on the synthesis of
                bacterial nano cellulose (BNC) from banana peel waste for water filter membrane
                applications. Materials Research Express 7(5): 2-10.
            
         Silveira, R.K., Coelho, A.R., Pinto, F.C., de Albuquerque, A.V.,
            de Melo Filho, D.A. & de Andrade Aguiar,
              J.L. 2016. Bioprosthetic mesh of bacterial cellulose for treatment of abdominal
              muscle aponeurotic defect in rat model. Journal
                of Materials Science: Materials in Medicine 27(8): 129.
  
 Skocaj,
            M. 2019. Bacterial nanocellulose in papermaking. Cellulose 26(11): 6477-6488.
  
 Skvortsova, Z.N., Gromovykh, T.I., Grahev, V.S. & Traskin,
            V.Y. 2019. Physicochemical mechanics of bacterial cellulose. Colloid Journal 81(4): 366-376.
  
           Sriplai,
            N., Sirima, P., Palaporn, D., Mongkolthanaruk, W., Eichhorn, S.J. &
            Pinitsoontorn, S. 2018. White magnetic paper based on bacterial cellulose nanocomposite. Journals of Materials Chemistry C 42(6): 11427-11435.
  
 Stanisławska
            A. 2016. Bacterial nonocellulose as a microbiological derived nanomaterial. Advances in Materials Science 16(4):
            45-57.
  
           Stanisławska,
            A., Staroszczyk, H. & Szkodo, M. 2020. The
              effect of dehydration/rehydration of bacterial nanocellulose on its
              tensile strength and physicochemical properties. Carbohydrate Polymers 236(10): 116023.  
  
           Stasiak-Różanska, L. & Płoska, J. 2018. Study on the
            use of microbial cellulose as a biocarrier for 1,3-dihydroxy-2-propanone and
            its potential application in industry. Polymers 10(4): 2-10.
  
           Sunasee,
            R., Hemraz, U.D. & Ckless, K. 2016. Cellulose nanocrystals: A versatile
            nanoplatform for emerging biomedical applications. Expert Opinion on Drug Delivery 13(9): 1243-1256.
  
           Sutherland,
            I.W. 1998. Novel and established applications of microbial polysaccharides. Trends
              Biotechnology 16(1): 41-46.
  
           Tahara,
            N., Tabuchi, M., Watanabe, K., Yano, H., Morinaga, Y. & Yoshinaga, F. 1997. Degree of polymerization of cellulose from Acetohacter
              xylinum BPR2001 decreased by cellulase produced by the strain. Bioscience, Biotechnology and Biochemistry 61(11): 1862-1865.
  
           Tanaka, M.L., Vest, N., Ferguson, C.M. & Gatenholm, P. 2014. Comparison of biomechanical properties
            of native menisci and bacterial cellulose implant. International
              Journal of Polymeric
                Materials and Polymeric Biomaterials63(17): 891-897.
  
           Torgbo,
            S. & Sukyai, P. 2018. Bacterial cellulose-based scaffold materials for bone
            tissue engineering. Applied Materials
              Today 11(2): 34-49.
  
           Torres,
            F.G., Arroyo, J.J. & Troncoso, O.P. 2019. Bacterial
              cellulose nanocomposites: An all-nano type of material. Materials Science & Engineering C 98(5): 1277-1293. 
  
           Toyosaki,
            H., Naritomi, T., Seto, A., Matsuoka, M., Tsuchida, T. & Yoshinaga, F.
            1995.  Screening
              of bacterial cellulose producing Acetobacter strains suitable for
              agitated culture. Bioscience,
                Biotechnology and Biochemistry 59(8): 1498-1502.
  
 Ullah,
            H., Wahid, F., Santos, H.A. & Khan, T. 2016. Advances in biomedical and
            pharmaceutical applications of functional bacterial cellulose-based
            nanocomposites. Carbohydrate Polymers 150(16): 330-352.
  
           Urbina, L., Corcuera, M.A., Eceiza, A. & Retei, A. 2019. Stiff-all
            bacterialcellulose nanopaper with enhanced mechanical and barrier properties. Materials Letters 246(13): 67-70.
  
 Urbina,
            L., Guaresti, O., Requies, J., Gabilondo, N., Eceiza,
              A., Corcuera, M.A. & Retegi, A. 2018. Design of reusable novel membranes based
                on bacterial cellulose and chitosan for the filtration of copper in
                wastewaters. Carbohydrate Polymers 193(15): 362-372.
  
 US4891317.
            Brown Jr., R.M., Brown, D.S. & Gretz, M.R. 1990. Magnetic alternation cellulose
            during its biosynthesis (US Patent).
  
           US5846213.
            Wai-Kei, W. 1998. Cellulose membrane and method for manufacture thereof. (US
            Patent).
            
           Wacikowski,
            B. & Michałowski, M. 2020. The possibility of using bacterial
            cellulose in particleboard technology. Annals of WULS SGGW Forestry and Wood Technology 109: 16-23.
  
           Wang, J.,
            Tavakoli, J. & Tang, Y. 2019. Bacterial
              cellulose production, properties and applications with different culture
              methods - A review. Carbohydrate Polymers 219(17): 63-76.
  
 Watanabe,
            K., Tabuchi, M., Morinaga, Y. & Yoshinaga, F. 1998. Structural features and
            properties of bacterial cellulose produced in agitated culture. Cellulose 5(3): 187-200.
  
           Vazquez, A., Foresti, M.L., Cerrutti, P. & Galvagno, M. 2013.
            Bacterial cellulose from simple and low-cost production media by Gluconacetobacter xylinus. Journal of Polymers and Environment 21(2):
            545-554.
  
 Vigentini,
            I., Fabrizio, V., Dellacà, F., Rossi, S., Azario, I., Mondi, C., Benaglia, M.
  & Foschino, R. 2019. Set-up of bacterial cellulose production from the
            genusKomagataeibacter and its use in a gluten-free bakery product as a case
            study. Frontiers in Microbiology 10:
            1-13.
 Yamada, Y., Yukphan, P., Lan Vu, H.T., Maramatsu, Y., Tanasupawat,
            S. & Nakagawa, Y.  2012. Description
            of Komagataeibacter gen. nov., with
            proposals of new combinations (Acetobacteraceae). Journal of General and Applied Microbiology 58(5): 397-404.
  
           
            
          Yang, G., Xie, J., Hong, F., Cao, Z. & Yang, X. 2012.
            Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose
            membrane: Effect of fermentation carbon sources of bacterial cellulose. Carbohydrate
              Polymers 87(1): 839-845.
              
           Yang,
            X.Y., Huang, C., Guo, H.J., Xiong, L., Luo, J., Wang, B., Lin, X.Q., Chen, X.F.
            & Chen, X.D. 2016. Bacterial cellulose production from the litchi extract
            by Gluconacetobacter xylinus. Preprative Biochemistry &
              Biotechnolology 46(1): 39-43.
            
         Ye,
            S., Jiang, L., Su, Ch., Zhu, Z., Wen, Y. & Shao, W. 2019. Development of
            gelatin/bacterial cellulose composite sponges as potential natural wound
            dressings. International Journal of
            Biological Macromolecules 133(11): 148-155. Yim,
            S.M., Song, J.E. & Kim, H.R. 2017. Production and
              characterization of bacterial cellulose fabrics by nitrogen sources of tea and
              carbon sources of sugar. Process Biochemistry 59(8): 26-36.
            
           Yoshino, A., Tabuchi, M., Uo, M., Tatsumi, H., Hideshima, K.,
            Kondo, S. & Sekine, J. 2013. Applicability of bacterial cellulose
              as an alternative to paper points in endodontic treatment. Acta Biomaterialia 9(4):
              6116-6122.
  
 Yuen, J.D., Shriver-Lake,
            L.C., Walper, S.A., Zabetakis, D., Breger, J.C. & Stenger, D.A. 2020.
            Microbial nanocellulose printed circuit boards for medical sensing. Sensors 20(1): 1-12.
  
 Xiang, Z., Jin, X., Liu, Q., Cheng, Y., Li, J. & Lu, F. 2017a.
            The reinforcement mechanism of bacterial cellulose on paper made from woody and
            nonwoody fiber sources. Cellulose 24(11): 5147-5156.
  
           Xiang, Z., Liu, Q., Chen, Y. & Lu, F. 2017b. Effects of
            physical and chemical structures of bacterial cellulose on its enhancement to
            paper physical properties. Cellulose 24(11): 3513-3523.
  
           Zhao,
            H., Xia, J., Wang, J., Yan, X., Wang, C., Lei, T., Xian, M. & Zhang, H.
            2018. Production of bacterial cellulose using
              polysaccharide fermentation wastewater as inexpensive nutrient sources. Biotechnology & Biotechnological
                Equipment 32(2): 350-356.
  
 Zhang, H., Jia, S., Wan, T., Jia, Y., Yang, H., Yan, L. &
            Zhong, C. 2011. Biosynthesis of spherical Fe3O4/bacterial
            cellulose nanocomposites as adsorbents for heavy metal ions. Carbohydrate
              Polymers 86(4): 1558-1564.
  
 
             
           *Corresponding author; email:
            piotr_boruszewski@sggw.edu.pl
            
           
            
          
           
            
             
              
  
           |