Sains Malaysiana 50(4)(2021): 1089-1099

http://doi.org/10.17576/jsm-2021-5004-19

 

The Effect of Bioactive Glass and Sintering Conditions on the Properties of Titanium-Hydroxyapatite Composites

(Kesan Kaca Bioaktif dan Keadaan Pensinteran pada Sifat Bahan Komposit Titanium-Hidroksiapatit)

 

MOHAMED ABDULMUNEM1*, MURALITHRAN G. KUTTY1, WAN HALIZA BINTI ABD MAJID2, ALI DABBAGH1, NOOR HAYATY ABU KASIM3, NOOR AZLIN BINTI YAHYA1 & HADIJAH ABDULLAH4

 

1Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

2Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

3Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Federal Territory, Malaysia

 

4Department of Conservative Dentistry, Dental Faculty MAHSA University, Saujana Putra, 42610 Jenjarom, Selangor Darul Ehsan, Malaysia

 

Received: 17 January 2019/Accepted: 23 September 2020

 

ABSTRACT

Titanium-hydroxyapatite (Ti-HA) based composites have been widely investigated as viable materials to be used in dentistry. However, sintering of these composites is very challenging due to decomposition of HA and oxidation of Ti. The objective of this study was to investigate the effect of incorporating a bioactive glass in Ti-HA composites sintered in different atmospheric conditions. The bioactive glass was prepared and added to different percentages of Ti-HA mixtures and divided into two groups. Samples in Group 1 were sintered with air atmosphere, while samples in Group 2 were sintered with vacuum furnace. All samples were later subjected to XRD, SEM, density, micro-hardness, and compression strength tests. XRD results showed that in Group 1, the major phases were assigned to Ti and HA while the minor phases were assigned to oxidised Ti. Whereas, Group 2 showed that the major phases were assigned to HA and the minor phases showed decomposition of HA to Ca3(PO4)2 (TCP) and Ca4(PO4)2O (TTCP). Oxidized Ti was also present in this group. In terms of density, micro-hardness and compression strength, statistical analyses showed that samples in Group 1 have a significant difference (p = 0.000) as compared to those in Group 2. Sintering Ti-HA composites incorporated with BG by using air atmosphere furnace could reduce the decomposition of HA and oxidation of Ti, thus improve the density, micro-hardness and compression strength of the composites.

 

Keywords: Bioactive glass; composites; compression strength; hydroxyapatite; sintering process; titanium

 

ABSTRAK

Asas komposit titanium-hidroksiapatit (Ti-HA) telah dikaji secara meluas sebagai bahan berdaya maju yang digunakan dalam bidang pergigian. Akan tetapi, pensinteran komposit ini adalah sangat mencabar disebabkan penguraian bahan HA dan pengoksidan Ti. Objektif kajian ini adalah untuk mengkajikesan memasukkan kaca bioaktif dalam komposit Ti-HA yang disinter dalam keadaan atmosfera yang berbeza. Kaca bioaktif disediakan dan ditambahkan kepada peratusan campuran Ti-HA yang berbeza dan dibahagikan kepada dua kumpulan. Sampel dalam Kumpulan 1 disinter dengan atmosfera udara, sementara sampel dalam Kumpulan 2 disinter dengan relau vakum. Semua sampel kemudiannya menjalani ujian XRD, SEM, ketumpatan, kekerasan mikro dan kekuatan mampatan. Hasil XRD menunjukkan bahawa dalam Kumpulan 1, fasa utama ditujukan untuk Ti dan HA sementara fasa minor ditujukan untuk Ti yang teroksidaan. Manakala, Kumpulan 2 menunjukkan bahawa fasa utama ditujukan untuk HA dan fasa minor menunjukkan penguraian HA ke Ca3 (PO4) 2 (TCP) dan Ca4 (PO4) 2O (TTCP). Ti yang teroksidaan juga hadir dalam kumpulan ini. Dari segi ketumpatan, kekerasan mikro dan kekuatan mampatan, analisis statistik menunjukkan bahawa sampel dalam Kumpulan 1 mempunyai perbezaan yang signifikan (p = 0,000) berbanding dengan kumpulan 2. Sintering Ti-HA komposit yang digabungkan dengan kaca bioaktif  menggunakan relau atmosfera udara dapat mengurangkan penguraian HA dan pengoksidaan Ti, sehingga meningkatkan ketumpatan, kekerasan mikro dan kekuatan mampatan komposit.

 

Kata kunci: Hidroksiapatit; kaca bioaktif; kekuatan mampatan; komposit; proses pensinteran; titanium

 

REFERENCES

Aldousari, S.M., Fouda, N., Hedia, H.S. & AlThobiani, F.W.H. 2018. Comparison of titanium and FGM dental implants with different coating types. Materials Testing 60(2): 142-148.

Arifin, A., Sulong, A.B., Muhamad, N. & Syarif, J. 2015. Characterization of hydroxyapatite/TI6AL4V composite powder under various sintering temperature.  Jurnal Teknologi 75(7): 27-31.

Arifin, A., Sulong, A.B., Muhamad, N., Syarif, J. & Ramli, M.I. 2014. Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: A review. Materials & Design 55: 165-175.

Balbinotti, P., Gemelli, E., Buerger, G., de Lima, S.A., de Jesus, J., Camargo, N.H.A., Henriques, V.A.R. & Soares, G.D.d.A. 2011. Microstructure development on sintered Ti/HA biocomposites produced by powder metallurgy. Materials Research 14(3): 384-393.

Boccaccini, A.R., Erol, M., Stark, W.J., Mohn, D., Hong, Z. & Mano, J.F. 2010. Polymer/bioactive glass nanocomposites for biomedical applications: A review.  Composites Science and Technology 70(13): 1764-1776.

Bodhak, S., Bose, S. & Bandyopadhyay, A. 2011. Influence of MgO, SrO, and ZnO dopants on electro‐thermal polarization behavior and in vitro biological properties of hydroxyapatite ceramics. Journal of the American Ceramic Society 94(4): 1281-1288.

Brunette, D.M., Tengvall, P., Textor, M. & Thomsen, P. 2012. Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications. Heidelberg, Germany: Springer Science & Business Media. p. 391.

Camargo, N.H.A., Gemelli, E., Passoni, L.S., Franczak, P.F. & Corrêa, P. 2018. Elaboration of a triphasic calcium phosphate and silica nanocomposite for maxillary grafting and deposition on titanium implants. International Journal of Materials Research 109(1): 68-75.

Chenglin, C., Jingchuan, Z., Zhongda, Y. & Shidong, W. 1999. Hydroxyapatite-Ti functionally graded biomaterial fabricated by powder metallurgy. Materials Science and Engineering: A 271(1-2): 95-100.

Comín, R., Cid, M.A., Grinschpun, L., Oldani, C. & Salvatierra, N.A. 2017. Titanium-hydroxyapatite composites sintered at low temperature for tissue engineering: in vitro cell support and biocompatibility. Journal of Applied Biomaterials & Functional Materials 15(2): e176-e183.

Dabbagh, A., Madfa, A., Naderi, S., Talaeizadeh, M., Abdullah, H., Abdulmunem, M. & Abu Kasim, N.H. 2019. Thermomechanical advantages of functionally graded dental posts: A finite element analysis. Mechanics of Advanced Materials and Structures26(8): 700-709.

Goudarzi, M., Batmanghelich, F., Afshar, A., Dolati, A. & Mortazavi, G. 2014. Development of electrophoretically deposited hydroxyapatite coatings on anodized nanotubular TiO2 structures: Corrosion and sintering temperature. Applied Surface Science 301: 250-257.

Gunawan, Sopyan, I., Suryanto & Naqshbandi, A. 2014. Zinc-doped biphasic calcium phosphate nanopowders synthesized via sol-gel method. Indian Journal of Chemistry Section A 53A(2): 152-158.

Gunawan, Sopyan, I., Nurfaezah, S. & Ammar, A. 2013. Development of triphasic calcium phosphate-carbon nanotubes (HA/TCP-CNT) composite: A preliminary study. Key Engineering Materials 531-532: 258-261.

Karimi, S., Mahzoon, F., Javadpour, S. & Janghorban, K. 2015. Study of wear and corrosion behavior of cathodic plasma electrolytic deposition of zirconia-hydroxyapatite on titanium and 316L stainless steel in Ringer's solution. International Journal of Materials Research 106(6): 614-620.

Kasim, N.H.A., Madfa, A.A., Hamdi, M. & Rahbari, G.R. 2011. 3D-FE analysis of functionally graded structured dental posts. Dental Materials Journal 30(6): 869-880.

Li, Y.H., Wang, F. & Li, J.J. 2017. Current developments of biomedical porous Ti-Mo alloys.  International Journal of Materials Research 108(8): 619-624.

Marcelo, T.M., Vanessa, L., Oliveira, M.V.d. & Carvalho, M.H. 2006. Microstructural characterization and interactions in Ti-and TiH2-hydroxyapatite vacuum sintered composites.  Materials Research 9(1): 65-71.

Mendelson, B.C., Jacobson, S.R., Lavoipierre, A.M. & Huggins, R.J. 2010. The fate of porous hydroxyapatite granules used in facial skeletal augmentation. Aesthetic Plastic Surgery 34(4): 455-461.

Nandi, S.K., Kundu, B., Ghosh, S.K., Mandal, T.K., Datta, S., De, D.K. & Basu, D. 2009. Cefuroxime-impregnated calcium phosphates as an implantable delivery system in experimental osteomyelitis. Ceramics International 35(4): 1367-1376.

Ning, C. & Zhou, Y. 2008. Correlations between the in vitro and in vivo bioactivity of the Ti/HA composites fabricated by a powder metallurgy method. Acta Biomaterialia 4(6): 1944-1952.

Ning, C.Q. & Zhou, Y. 2004. On the microstructure of biocomposites sintered from Ti, HA and bioactive glass.  Biomaterials 25(17): 3379-3387.

Prasad, S., Vyas, V.K., Ershad, M.D. & Pyare, P. 2017. Crystallization and mechanical properties of (45s5-HA) biocomposite for biomedical implantation. Ceramics-Silikáty 61(4): 378-384.

Santhosh, S. & Prabu, S.B. 2013. Nano hydroxyapatite-polysulfone coating on Ti-6Al-4V substrate by electrospinning. International Journal of Materials Research 104(12): 1254-1262.

Shahrjerdi, A., Mustapha, F., Bayat, M., Sapuan, S.M. & Majid, D.L.A. 2011. Fabrication of functionally graded hydroxyapatite-titanium by applying optimal sintering procedure and powder metallurgy. International Journal of Physical Sciences 6(9): 2258-2267.

Srivastava, A.K., Pyare, R. & Singh, S.P. 2012. In vitro bioactivity and physical-mechanical properties of MnO2 substituted 45S5 bioactive glasses and glass-ceramics. Journal of Biomaterials and Tissue Engineering 2(3): 249-258.

Veljović, Dj., Jančić-Hajneman, R., Balać, I., Jokić, B., Putić, S., Petrović, R. & Janaćković, Dj. 2011. The effect of the shape and size of the pores on the mechanical properties of porous HAP-based bioceramics. Ceramics International 37(2): 471-479.

Vitale-Brovarone, C., Baino, F., Tallia, F., Gervasio, C. & Verné, E. 2012. Bioactive glass-derived trabecular coating: A smart solution for enhancing osteointegration of prosthetic elements. Journal of Materials Science: Materials in Medicine 23(10): 2369-2380.

Wakily, H., Dabbagh, A., Abdullah, H., Halim, N.F.A. & Kasim, N.H.A. 2015. Improved thermal and mechanical properties in hydroxyapatite-titanium composites by incorporating silica-coated titanium. Materials Letters 143: 322-325.

Weng, J., Liu, X., Zhang, X. & Ji, X. 1994. Thermal decomposition of hydroxyapatite structure induced by titanium and its dioxide. Journal of Materials Science Letters 13(3): 159-161.

Zhou, S., Li, Y.B., Wang, Y.Y., Zuo, Y., Gao, S.B., Li, M. & Zhang, L. 2014. The porous structure and mechanical properties of injection molded HA/PA66 scaffolds.  International Polymer Processing 29(4): 454-460.

 

*Corresponding author; email: mohamadjasem@yahoo.com       

 

 

     

previous