Sains Malaysiana 50(4)(2021): 1089-1099
http://doi.org/10.17576/jsm-2021-5004-19
The Effect of Bioactive Glass and Sintering
Conditions on the Properties of Titanium-Hydroxyapatite Composites
(Kesan Kaca Bioaktif dan Keadaan Pensinteran pada Sifat Bahan Komposit Titanium-Hidroksiapatit)
MOHAMED ABDULMUNEM1*, MURALITHRAN G. KUTTY1,
WAN HALIZA BINTI ABD MAJID2, ALI DABBAGH1, NOOR HAYATY
ABU KASIM3, NOOR AZLIN BINTI YAHYA1 & HADIJAH
ABDULLAH4
1Department of Restorative Dentistry, Faculty of
Dentistry, University of Malaya, 50603 Kuala
Lumpur, Federal Territory, Malaysia
2Department of Physics, Faculty of Science, University
of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
3Faculty of
Dentistry, Universiti Kebangsaan Malaysia,
Jalan Raja Muda Abdul Aziz,
Federal Territory, Malaysia
4Department of Conservative Dentistry, Dental
Faculty MAHSA University, Saujana Putra, 42610 Jenjarom, Selangor Darul Ehsan, Malaysia
Received: 17 January 2019/Accepted:
23 September 2020
ABSTRACT
Titanium-hydroxyapatite (Ti-HA) based
composites have been widely investigated as viable materials to be used in
dentistry. However, sintering of these composites is very challenging due to
decomposition of HA and oxidation of Ti. The
objective of this study was to investigate the effect of incorporating a
bioactive glass in Ti-HA composites sintered in
different atmospheric conditions. The bioactive glass was prepared and added to
different percentages of Ti-HA mixtures and divided
into two groups. Samples in Group 1 were sintered with air atmosphere, while
samples in Group 2 were sintered with vacuum furnace. All samples were later
subjected to XRD, SEM, density, micro-hardness, and compression strength tests.
XRD results showed that in Group 1, the major phases were assigned to Ti and HA while the minor phases were assigned to oxidised Ti. Whereas, Group 2 showed that the major phases were
assigned to HA and the minor phases showed decomposition of HA to Ca3(PO4)2 (TCP) and Ca4(PO4)2O
(TTCP). Oxidized Ti was also present in this group.
In terms of density, micro-hardness and compression strength, statistical
analyses showed that samples in Group 1 have a significant difference (p = 0.000) as compared to those
in Group 2. Sintering Ti-HA composites incorporated
with BG by using air atmosphere furnace could reduce the decomposition of HA
and oxidation of Ti, thus improve the density,
micro-hardness and compression strength of the composites.
Keywords: Bioactive glass;
composites; compression strength; hydroxyapatite; sintering process; titanium
ABSTRAK
Asas komposit titanium-hidroksiapatit (Ti-HA) telah dikaji secara meluas sebagai bahan berdaya maju yang digunakan dalam bidang pergigian. Akan tetapi, pensinteran komposit ini adalah sangat mencabar disebabkan penguraian bahan HA dan pengoksidan Ti. Objektif kajian ini adalah untuk mengkajikesan memasukkan kaca
bioaktif dalam komposit Ti-HA yang disinter dalam keadaan atmosfera yang
berbeza. Kaca bioaktif disediakan dan ditambahkan kepada peratusan
campuran Ti-HA yang berbeza dan dibahagikan kepada dua kumpulan. Sampel dalam
Kumpulan 1 disinter dengan atmosfera udara, sementara sampel dalam Kumpulan 2
disinter dengan relau vakum. Semua sampel kemudiannya
menjalani ujian XRD, SEM, ketumpatan, kekerasan mikro dan kekuatan mampatan.
Hasil XRD menunjukkan bahawa dalam Kumpulan 1, fasa utama ditujukan untuk Ti
dan HA sementara fasa minor ditujukan untuk Ti yang teroksidaan. Manakala,
Kumpulan 2 menunjukkan bahawa fasa utama ditujukan untuk HA dan fasa minor
menunjukkan penguraian HA ke Ca3 (PO4) 2 (TCP) dan Ca4 (PO4) 2O (TTCP). Ti yang
teroksidaan juga hadir dalam kumpulan ini. Dari segi ketumpatan, kekerasan
mikro dan kekuatan mampatan, analisis statistik menunjukkan bahawa sampel dalam
Kumpulan 1 mempunyai perbezaan yang signifikan (p = 0,000)
berbanding dengan kumpulan 2. Sintering Ti-HA komposit yang digabungkan dengan
kaca bioaktif menggunakan relau
atmosfera udara dapat mengurangkan penguraian HA dan pengoksidaan Ti, sehingga
meningkatkan ketumpatan, kekerasan mikro dan kekuatan mampatan komposit.
Kata kunci: Hidroksiapatit; kaca bioaktif; kekuatan mampatan; komposit; proses pensinteran; titanium
REFERENCES
Aldousari,
S.M., Fouda, N., Hedia, H.S. & AlThobiani, F.W.H. 2018. Comparison of
titanium and FGM dental implants with different coating types. Materials Testing 60(2): 142-148.
Arifin,
A., Sulong, A.B., Muhamad, N. & Syarif, J. 2015. Characterization of hydroxyapatite/TI6AL4V
composite powder under various sintering temperature. Jurnal
Teknologi 75(7): 27-31.
Arifin,
A., Sulong, A.B., Muhamad, N., Syarif, J. & Ramli, M.I. 2014. Material
processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant
materials using powder metallurgy: A review. Materials & Design 55: 165-175.
Balbinotti,
P., Gemelli, E., Buerger, G., de Lima, S.A., de Jesus, J., Camargo, N.H.A.,
Henriques, V.A.R. & Soares, G.D.d.A. 2011. Microstructure development on
sintered Ti/HA biocomposites produced by powder metallurgy. Materials Research 14(3): 384-393.
Boccaccini,
A.R., Erol, M., Stark, W.J., Mohn, D., Hong, Z. & Mano, J.F. 2010.
Polymer/bioactive glass nanocomposites for biomedical applications: A
review. Composites Science and Technology 70(13): 1764-1776.
Bodhak,
S., Bose, S. & Bandyopadhyay, A. 2011. Influence of MgO, SrO, and ZnO
dopants on electro‐thermal polarization behavior and in vitro biological properties of hydroxyapatite ceramics. Journal of the American Ceramic Society 94(4): 1281-1288.
Brunette,
D.M., Tengvall, P., Textor, M. & Thomsen, P. 2012. Titanium in Medicine: Material Science, Surface Science, Engineering,
Biological Responses and Medical Applications. Heidelberg, Germany:
Springer Science & Business Media. p. 391.
Camargo,
N.H.A., Gemelli, E., Passoni, L.S., Franczak, P.F. & Corrêa, P. 2018.
Elaboration of a triphasic calcium phosphate and silica nanocomposite for
maxillary grafting and deposition on titanium implants. International Journal of Materials Research 109(1): 68-75.
Chenglin,
C., Jingchuan, Z., Zhongda, Y. & Shidong, W. 1999. Hydroxyapatite-Ti
functionally graded biomaterial fabricated by powder metallurgy. Materials Science and Engineering: A 271(1-2): 95-100.
Comín,
R., Cid, M.A., Grinschpun, L., Oldani, C. & Salvatierra, N.A. 2017.
Titanium-hydroxyapatite composites sintered at low temperature for tissue
engineering: in vitro cell support and biocompatibility. Journal of Applied Biomaterials &
Functional Materials 15(2): e176-e183.
Dabbagh,
A., Madfa, A., Naderi, S., Talaeizadeh, M., Abdullah, H., Abdulmunem, M. &
Abu Kasim, N.H. 2019. Thermomechanical advantages of functionally graded dental
posts: A finite element analysis. Mechanics
of Advanced Materials and Structures26(8): 700-709.
Goudarzi,
M., Batmanghelich, F., Afshar, A., Dolati, A. & Mortazavi, G. 2014.
Development of electrophoretically deposited hydroxyapatite coatings on
anodized nanotubular TiO2 structures: Corrosion and sintering temperature. Applied Surface Science 301: 250-257.
Gunawan, Sopyan, I.,
Suryanto & Naqshbandi, A. 2014. Zinc-doped biphasic calcium phosphate
nanopowders synthesized via sol-gel method. Indian
Journal of Chemistry Section A 53A(2): 152-158.
Gunawan, Sopyan, I.,
Nurfaezah, S. & Ammar, A. 2013. Development of triphasic calcium
phosphate-carbon nanotubes (HA/TCP-CNT) composite: A preliminary study. Key Engineering Materials 531-532: 258-261.
Karimi,
S., Mahzoon, F., Javadpour, S. & Janghorban, K. 2015. Study of wear and
corrosion behavior of cathodic plasma electrolytic deposition of
zirconia-hydroxyapatite on titanium and 316L stainless steel in Ringer's
solution. International Journal of
Materials Research 106(6): 614-620.
Kasim, N.H.A., Madfa,
A.A., Hamdi, M. & Rahbari, G.R. 2011. 3D-FE analysis of functionally graded
structured dental posts. Dental Materials
Journal 30(6): 869-880.
Li,
Y.H., Wang, F. & Li, J.J. 2017. Current developments of biomedical porous
Ti-Mo alloys. International Journal of Materials Research 108(8): 619-624.
Marcelo,
T.M., Vanessa, L., Oliveira, M.V.d. & Carvalho, M.H. 2006. Microstructural
characterization and interactions in Ti-and TiH2-hydroxyapatite vacuum sintered
composites. Materials Research 9(1): 65-71.
Mendelson,
B.C., Jacobson, S.R., Lavoipierre, A.M. & Huggins, R.J. 2010. The fate of
porous hydroxyapatite granules used in facial skeletal augmentation. Aesthetic Plastic Surgery 34(4):
455-461.
Nandi,
S.K., Kundu, B., Ghosh, S.K., Mandal, T.K., Datta, S., De, D.K. & Basu, D.
2009. Cefuroxime-impregnated calcium phosphates as an implantable delivery
system in experimental osteomyelitis. Ceramics
International 35(4): 1367-1376.
Ning,
C. & Zhou, Y. 2008. Correlations between the in vitro and in vivo bioactivity of the Ti/HA composites fabricated by a powder metallurgy method. Acta Biomaterialia 4(6): 1944-1952.
Ning,
C.Q. & Zhou, Y. 2004. On the microstructure of biocomposites sintered from
Ti, HA and bioactive glass. Biomaterials 25(17): 3379-3387.
Prasad,
S., Vyas, V.K., Ershad, M.D. & Pyare, P. 2017. Crystallization and
mechanical properties of (45s5-HA) biocomposite for biomedical implantation. Ceramics-Silikáty 61(4): 378-384.
Santhosh,
S. & Prabu, S.B. 2013. Nano hydroxyapatite-polysulfone coating on Ti-6Al-4V
substrate by electrospinning. International
Journal of Materials Research 104(12): 1254-1262.
Shahrjerdi,
A., Mustapha, F., Bayat, M., Sapuan, S.M. & Majid, D.L.A. 2011. Fabrication
of functionally graded hydroxyapatite-titanium by applying optimal sintering
procedure and powder metallurgy. International
Journal of Physical Sciences 6(9): 2258-2267.
Srivastava,
A.K., Pyare, R. & Singh, S.P. 2012. In vitro bioactivity and
physical-mechanical properties of MnO2 substituted 45S5 bioactive
glasses and glass-ceramics. Journal of
Biomaterials and Tissue Engineering 2(3): 249-258.
Veljović,
Dj., Jančić-Hajneman, R., Balać, I., Jokić, B., Putić,
S., Petrović, R. & Janaćković, Dj. 2011. The effect of the
shape and size of the pores on the mechanical properties of porous HAP-based
bioceramics. Ceramics International 37(2): 471-479.
Vitale-Brovarone,
C., Baino, F., Tallia, F., Gervasio, C. & Verné, E. 2012. Bioactive
glass-derived trabecular coating: A smart solution for enhancing
osteointegration of prosthetic elements. Journal
of Materials Science: Materials in Medicine 23(10): 2369-2380.
Wakily,
H., Dabbagh, A., Abdullah, H., Halim, N.F.A. & Kasim, N.H.A. 2015. Improved
thermal and mechanical properties in hydroxyapatite-titanium composites by
incorporating silica-coated titanium. Materials
Letters 143: 322-325.
Weng,
J., Liu, X., Zhang, X. & Ji, X. 1994. Thermal decomposition of
hydroxyapatite structure induced by titanium and its dioxide. Journal of Materials Science Letters 13(3): 159-161.
Zhou,
S., Li, Y.B., Wang, Y.Y., Zuo, Y., Gao, S.B., Li, M. & Zhang, L. 2014. The
porous structure and mechanical properties of injection molded HA/PA66
scaffolds. International Polymer Processing 29(4): 454-460.
*Corresponding
author; email: mohamadjasem@yahoo.com
|