Sains Malaysiana 50(4)(2021): 889-896

http://doi.org/10.17576/jsm-2021-5004-01

 

Callus Induction and Regeneration from Germinating Mature Embryos of Wheat (Triticum aestivum L.)

(Induksi Kalus dan Penjanaan Semula daripada Percambahan Embrio Matang Gandum (Triticum aestivum L.))

 

SAMIH M. TAMIMI* & HALIMA OTHMAN

 

Department of Biological Sciences, The University of Jordan, Amman 11942, Jordan

 

Received: 20 February 2020/Accepted: 19 September 2020

 

ABSTRACT

A high-performance protocol for callus induction was devised using germinating mature embryos of two local wheat (Triticum aestivum L.) landraces as explant. The results showed that callus development from germinating embryos was rapid starting one day after culture with an induction rate 20 to 25% higher than those of soaked embryos. In addition, the mean rate of growth of callus developed from germinating embryos was 60 to 70% higher than those cultured from soaked embryos. This study also demonstrated a higher frequency of green spots formation (48 to 56%) on callus derived from germinating embryos compared to their soaked counterpart (24 to 28%), suggesting a better differentiation potential of callus cultures derived from germinating embryo. These findings indicate that germinating mature embryo is more suitable explant for wheat callus induction and regeneration than the soaked mature embryo commonly employed for wheat callus culture.

 

Keywords: Callus culture; germination; mature embryo; Triticum aestivum; wheat

 

ABSTRAK

Protokol berprestasi tinggi untuk induksi kalus telah dilakukan dengan menggunakan embrio matang yang dicambah daripada dua kultur gandum tempatan(Triticum aestivum L.) sebagai eksplan. Hasil kajian menunjukkan bahawa perkembangan kalus daripada embrio tersebut bercambah dengan cepat bermula sehari selepas kultur dengan kadar induksi 20 hingga 25% lebih tinggi daripada embrio yang direndam. Di samping itu, kadar pertumbuhan kalus yang berkembang daripada embrio bercambah adalah 60 hingga 70% lebih tinggi daripada yang dibiakkan daripada embrio yang direndam. Kajian ini juga menunjukkan frekuensi pembentukan tompok hijau yang lebih banyak (48 hingga 56%) pada kalus yang berasal daripada embrio bercambah dibandingkan dengan kaunterpart yang direndam (24 hingga 28%) menunjukkan potensi pembezaan yang lebih baik daripada kultur kalus yang berasal daripada percambahan embrio. Penemuan ini menunjukkan bahawa percambahan embrio matang lebih sesuai untuk induksi kalus gandum dan pertumbuhan semula berbanding teknik embrio matang direndam yang biasa digunakan untuk kultur kalus gandum.

 

Kata kunci: Embrio matang; gandum; kultur kalus; percambahan; Triticum aestivum

 

REFERENCES

Abumhadi, N., Kamenarova, K., Todorovska, E., Dimov, G., Trifonova, A., Gecheff, K. & Atanassov, A. 2005. Callus induction and plant regeneration from barley mature embryos (Hordem vulgare L.). Biotechnology and Biotechnological Equipment 19(3): 32-38.  

Battal, A. 2010. Optimization of mature embryo based regeneration and genetic transformation of Turkish wheat cultivars. Msc Thesis. Middle East Technical University (Unpublished).

Ben Amer, I., Worland, A. & Borner, A. 1992. In vitro culture variation of wheat caused by genes affecting plant growth habit in vivo. Euphytica 61(3): 233-240.

Bradley, D., Bruneau, A. & Qu, R. 2001. Effect of cultivar, explants treatment and medium supplements on callus induction and plantlet regeneration in perennial ryegrass. International Turfgrass Society Research Journal 9: 152-156.

Chugh, A. & Khurana, P. 2003. Regeneration via somatic embryogenesis from leaf basal segments and genetic transformation of bread and emmer wheat by particle bombardment. Plant Cell, Tissue and Organ Culture 74(2): 151-161.

Compton, M.E. 1994. Statistical methods suitable for the analysis of plant tissue culture data. Plant Cell, Tissue and Organ Culture 37(3): 217-242.

Coskun, Y., Duran, R.E., Savaskan, C., Demirci, T. & Hakan, M.T. 2013. Efficient plant regeneration with arabinogalactan-proteins on various ploidy levels of cereals. Journal of Integrative Agriculture 12(3): 420-425.  

de Almeida, M., de Almeida, C.V., Graner, E.M., Brondani, G.E. & de AbreuTarazi, M.F. 2012. Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: A histological study. Plant Cell Reports 31(8): 1495-1515.

Ding, L., Li, S., Gao, J., Wang, Y., Yang, G. & He, G. 2009. Optimization of agrobacterium-mediated transformation conditions in mature embryos of elite wheat.  Molecular Biology Reports 36(1): 29-36.  

Elmeer, K.E.S. 2013. Factors regulating somatic embryogenesis in plants. In Somatic Embryogenesis and Gene Expression, edited by Aslam, J., Srivastava, P.S. & Sharma, M.P. New Delhi, India: Narosa Publishing House. pp. 56-81.

Fernandez, S., Michaux-Ferriere, N. & Coumans, M. 1999. The embryogenic response of immature embryo cultures of durum wheat (Triticum durum Desf.): Histology and improvement by AgNO3. Plant Growth Regulation 28(3): 147-155.

Gliwicka, M., Nowak, K., Ciesla, E. & Gaj, M. 2012. Expression of seed storage product genes (CRA1 and OLEO4) in embryogenic cultures of somatic tissues of Arabidopsis. Plant Cell, Tissue and Organ Culture (PCTOC) 109(2): 235-245. 

Jiang, W., Cho, M.J. & Lemaux, P.G. 1998. Improved callus quality and prolonged regenerability in model and recalcitrant barley (Hordeum vulgare L.) cultivars. Plant Biotechnology 15(2): 63-69.

Kumar, R., Mamrutha, H.M., Kaur, A., Venkatesh, K., Grewal, A., Kumar, A. & Tiwari, V. 2017. Development of an efficient and reproducible regeneration system in wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants 23(4): 945-954. 

Mahmood, I., Abdul, R., Khan, Z., Hafiz, I. & Kaleem, S. 2012. Evaluation of tissue culture responses of promising wheat (Triticum aestivum L.) cultivars and development of efficient regeneration system. Pakistan Journal of Botany 44(1): 277-284.

Mendoza, M.G. & Kaeppler, H.F. 2002. Auxin and sugar effects on callus induction and plant regeneration frequencies from mature embryo of wheat (Triticum aestivum L.). In Vitro Cellular and Developmental Biology-Plant 38(1): 39-45.

Miroshnichenko, D.N., Filippov, M.V. & Dolgov, S.V. 2013. Medium optimization for efficient somatic embryogenesis and in vitro plant regeneration of spring common wheat varieties. Russian Agricultural Sciences 39(1): 24-28.

Miroshnichenko, D., Poroshin, G. & Dolgov, S. 2011. Genetic transformation of wheat using mature seed tissues. Applied Biochemistry and Microbiology 47(8): 767-775. 

Miroshnichenko, D., Filippov, M. & Dolgov, S. 2009. Effects of daminozide on somatic embryogenesis from immature and mature embryos of wheat. Australian Journal of Crop Science 3(2): 83-94.

Moghaieb, R.E., El-Arabi, N.I., Momtaz, O.A., Youssef, S.S. & Soliman, M.H. 2010. Genetic transformation of mature embryos of bread (T. aestivum) and pasta (T. durum) wheat genotypes. Genetically Modified Crops 1(2): 87-93.  

Murashige, T. & Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco cell cultures. Physiologia Plantarum 15(3): 473-497.

Murín, R., Mészáros, K., Nemecek, P., Kuna, R. & Faragó, J. 2012. Regeneration of immature and mature embryos from diverse sets of wheat genotypes using media containing different auxins. Acta Agronomica Hungarica60(2): 97-108. 

Nabors, M., Kroskey, C. & McHugh, D. 1982. Green spots are predictors of high callus growth rates and shoot formation in normal and in salt stressed tissue cultures of oat (Avena sativa L.). Zeitschrift für Pflanzenphysiologie105(4): 341-349.

Ortiz, J.P.A., Fama, G., Vallejos, R.H. & de Halac, I.N. 1996. Cytodifferentiation and cell organization in the somatic embryogenesis of wheat (Triticum aestivum L). Biocell 20(1): 61-66.

Ozbay, A. & Özgen, M. 2010. Is heterosis noticeable in the callus response of winter durum wheat F1 hybrids? Biologia Plantarum 54(4): 769-772.

Ozias-Akin, P. & Vasil, K. 1982. Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum L. (wheat): Evidence for somatic embryogenesis. Protoplasma 110(1982): 95-105.

Parmar, S., Sainger, M., Chaudhary, D. & Jaiwal, P. 2012. Plant regeneration from mature embryo of commercial Indian bread wheat (Triticum aestivum L.) cultivars. Physiology and Molecular Biology of Plants 18(2): 177-183.

Patnaik, D., Vishnudasan, D. & Khurana, P. 2006. Agrobacterium-mediated transformation of mature embryos of Triticum aestivum and Triticum durum. Current Science 91(3): 307-317. 

Phillips, G.C. 2004. In vitro morphogenesis in plants-recent advances. In Vitro Cellular and Developmental Biology-Plant 40(4): 342-345.

Rashid, U., Ali, S., Ali, G.M., Ayub, N. & Masood, M.S. 2009. Establishment of an efficient callus induction and plant regeneration system in Pakistani wheat (Triticum aestivum) cultivars. Electronic Journal of Biotechnology 12(3): 4-5.

Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C. & Job, D. 2012. Seed germination and vigor. Annual Review of Plant Biology 63: 507-533.

Repellin, A., Baga, M., Jauhar, P. & Chibbar, R. 2001. Genetic enrichment of cereal crops via alien gene transfer: new challenges. Inorganic nutrient manipulation in the induction of embryogenic callus from immature embryos of wheat. Plant Cell Tissue and Organ Culture 64(2-3): 159-183.   

Ren, J., Wang, X. & Yin, J. 2010. Dicamba and sugar effects on callus induction and plant regeneration from mature embryo culture of wheat. Agricultural Sciences in China 9(1): 31-37.

Shah, M., Jabeen, M. & Ilahi, I. 2003. In vitro callus induction, its proliferation and regeneration in seed explants of wheat (Triticum aestivum L.) Var.LU-26S. Pakistan Journal of Botany 35(2): 209-217.

Tang, Z., Ren, Z., Wu, F., Fu, S., Wang, X. & Zhang, H. 2006. The selection of transgenic recipients from new elite wheat cultivars and study on its plant regeneration system. Agricultural Sciences in China 5(6): 417-424. 

Yang, S., Xu, K., Wang, Y., Bu, B., Huang, W., Sun, F., Liu, S. & Xi, Y. 2015. Analysis of biochemical and physiological changes in wheat tissue culture using different germplasms and explant types. Acta Physiologiae Plantarum 37: 120.

Yaseen, M., Ahmad, T., Sablok, G., Standardi, A. & Hafiz, I.A. 2013. Review: Role of carbon sources for in vitro plant growth and development. Molecular Biology Reports 40(4): 2837-2849.

Yin, G., Wang, Y., She, M., Du, L., Xu, H., Ma, J. & Ye, X. 2011. Establishment of a highly efficient regeneration system for the mature embryo culture of wheat. Agricultural Sciences in China 10(1): 9-17. 

Yu, Y., Wang, J., Zhu, M.L. & Wei, Z.M. 2008.  Optimization of mature embryo-based high frequency callus induction and plant regeneration from elite wheat cultivars grown in China. Plant Breeding 127(3): 249-255.

Zale, J.M., Borchardt-Wier, H., Kidwal, K.K. & Stebar, C.M. 2004. Callus induction and plant regeneration from mature embryos of a diverse set of wheat genotypes. Plant Cell Tissue and Organ Culture 76(3): 277-281.

Zhao, L., Liu, S. & Song, S. 2010. Optimization of callus induction and plant regeneration from germinating seeds of sweet sorghum (Sorghum Bicolor Moench). African Journal of Biotechnology 9(16): 2367-2374.

 

*Corresponding author; email: tamimi@ju.edu.jo