Sains Malaysiana 50(4)(2021): 889-896
            
          
          http://doi.org/10.17576/jsm-2021-5004-01
            
          
          
             
          
          Callus Induction and Regeneration from
            Germinating Mature Embryos of Wheat (Triticum aestivum L.)
  
          (Induksi Kalus dan Penjanaan Semula daripada Percambahan Embrio Matang Gandum (Triticum aestivum L.))
            
          
          
             
          
          SAMIH M. TAMIMI* &
            HALIMA OTHMAN
            
          
          
             
          
          Department of Biological Sciences,
            The University of Jordan, Amman 11942, Jordan
            
          
          
             
          
          Received:
            20 February 2020/Accepted:
              19 September 2020
  
          
             
          
          ABSTRACT
            
          
          A high-performance
            protocol for callus induction was devised using germinating mature embryos of
            two local wheat (Triticum aestivum L.) landraces as explant. The results showed
              that callus development from germinating embryos was rapid starting one day after
              culture with an induction rate 20 to 25% higher than those of soaked embryos.
              In addition, the mean rate of growth of callus developed from germinating
              embryos was 60 to 70% higher than those cultured from soaked embryos. This
              study also demonstrated a higher frequency of green spots formation (48
              to 56%) on callus derived from germinating embryos compared to
                their soaked counterpart (24 to 28%), suggesting a better
                  differentiation potential of callus cultures derived from germinating embryo.
                  These findings indicate that germinating mature embryo is more suitable explant
                  for wheat callus induction and regeneration than the soaked mature embryo
                  commonly employed for wheat callus culture.
  
          
             
          
          Keywords: Callus culture; germination; mature embryo; Triticum aestivum; wheat
            
          
          
             
          
          ABSTRAK
            
          
          Protokol berprestasi tinggi untuk induksi kalus telah dilakukan dengan menggunakan embrio matang yang dicambah daripada dua kultur gandum tempatan(Triticum aestivum L.) sebagai eksplan. Hasil kajian menunjukkan bahawa perkembangan kalus daripada embrio tersebut bercambah dengan cepat bermula sehari selepas kultur dengan kadar induksi 20 hingga 25% lebih tinggi daripada embrio yang direndam. Di samping itu, kadar pertumbuhan kalus yang berkembang daripada embrio bercambah adalah 60 hingga 70% lebih tinggi daripada yang dibiakkan daripada embrio yang direndam. Kajian ini juga menunjukkan frekuensi pembentukan tompok hijau yang lebih banyak (48 hingga 56%) pada kalus yang berasal daripada embrio bercambah dibandingkan dengan kaunterpart yang direndam (24 hingga 28%) menunjukkan potensi pembezaan yang lebih baik daripada kultur kalus yang berasal daripada percambahan embrio. Penemuan ini menunjukkan bahawa percambahan embrio matang lebih sesuai untuk induksi kalus gandum dan pertumbuhan semula berbanding teknik embrio matang direndam yang biasa digunakan untuk kultur kalus gandum.
            
          
          
             
          
          Kata kunci: Embrio matang; gandum; kultur kalus; percambahan; Triticum aestivum
            
          
          
             
          
          REFERENCES
            
          
          Abumhadi, N., Kamenarova, K., Todorovska, E., Dimov, G., Trifonova, A., Gecheff, K.
  & Atanassov, A. 2005. Callus induction and plant
            regeneration from barley mature embryos (Hordem vulgare L.). Biotechnology and Biotechnological Equipment 19(3): 32-38.  
  
          Battal, A. 2010. Optimization of mature embryo based
            regeneration and genetic transformation of Turkish wheat cultivars. Msc Thesis. Middle East Technical University (Unpublished).
  
          Ben Amer, I., Worland,
            A. & Borner, A. 1992. In vitro culture
            variation of wheat caused by genes affecting plant growth habit in vivo. Euphytica 61(3): 233-240.
  
          Bradley, D., Bruneau, A.
  & Qu, R. 2001. Effect of cultivar, explants treatment and medium
            supplements on callus induction and plantlet regeneration in perennial
            ryegrass. International Turfgrass Society Research Journal 9: 152-156.
  
          Chugh, A. & Khurana, P. 2003. Regeneration via
            somatic embryogenesis from leaf basal segments and genetic transformation of
            bread and emmer wheat by particle bombardment. Plant Cell, Tissue and Organ Culture 74(2): 151-161.
  
          Compton, M.E. 1994.
            Statistical methods suitable for the analysis of plant tissue culture data. Plant
              Cell, Tissue and Organ Culture 37(3): 217-242.
  
          Coskun, Y., Duran, R.E., Savaskan, C., Demirci, T.
  & Hakan, M.T. 2013. Efficient plant regeneration
            with arabinogalactan-proteins on various ploidy levels of cereals. Journal
              of Integrative Agriculture 12(3): 420-425.  
  
          de Almeida, M., de
            Almeida, C.V., Graner, E.M., Brondani, G.E. & de AbreuTarazi, M.F. 2012. Pre-procambial cells are
            niches for pluripotent and totipotent stem-like cells for organogenesis and
            somatic embryogenesis in the peach palm: A histological study. Plant Cell
              Reports 31(8): 1495-1515.
  
          Ding, L., Li, S., Gao,
            J., Wang, Y., Yang, G. & He, G. 2009. Optimization of agrobacterium-mediated
            transformation conditions in mature embryos of elite wheat.  Molecular
              Biology Reports 36(1): 29-36.  
  
          Elmeer, K.E.S. 2013. Factors regulating somatic
            embryogenesis in plants. In Somatic Embryogenesis and Gene Expression,
            edited by Aslam, J., Srivastava, P.S. & Sharma, M.P. New Delhi, India: Narosa Publishing House. pp. 56-81.
  
          Fernandez, S., Michaux-Ferriere, N. & Coumans, M.
            1999. The embryogenic response of immature embryo cultures of durum wheat
            (Triticum durum Desf.):
            Histology and improvement by AgNO3. Plant Growth Regulation 28(3):
            147-155.
  
          Gliwicka, M., Nowak, K., Ciesla,
            E. & Gaj, M. 2012. Expression of seed storage
            product genes (CRA1 and OLEO4) in embryogenic cultures of somatic tissues of Arabidopsis. Plant Cell, Tissue and Organ Culture (PCTOC) 109(2): 235-245. 
  
          Jiang, W., Cho, M.J.
  & Lemaux, P.G. 1998. Improved callus quality and
            prolonged regenerability in model and recalcitrant
            barley (Hordeum vulgare L.) cultivars. Plant
              Biotechnology 15(2): 63-69.
  
          Kumar, R., Mamrutha, H.M., Kaur, A., Venkatesh, K., Grewal, A., Kumar,
            A. & Tiwari, V. 2017. Development of an efficient and reproducible
            regeneration system in wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants 23(4): 945-954. 
  
          Mahmood, I., Abdul, R.,
            Khan, Z., Hafiz, I. & Kaleem, S. 2012. Evaluation of tissue culture
            responses of promising wheat (Triticum aestivum L.) cultivars and development of efficient regeneration system. Pakistan
              Journal of Botany 44(1): 277-284.
  
          Mendoza, M.G. & Kaeppler, H.F. 2002. Auxin and sugar effects on callus
            induction and plant regeneration frequencies from mature embryo of wheat (Triticum aestivum L.). In Vitro Cellular and
              Developmental Biology-Plant 38(1): 39-45.
  
          Miroshnichenko, D.N., Filippov, M.V.
  & Dolgov, S.V. 2013. Medium optimization for
            efficient somatic embryogenesis and in vitro plant regeneration of
            spring common wheat varieties. Russian Agricultural Sciences 39(1):
            24-28.
  
          Miroshnichenko, D., Poroshin, G.
  & Dolgov, S. 2011. Genetic transformation of
            wheat using mature seed tissues. Applied Biochemistry and Microbiology 47(8):
            767-775. 
  
          Miroshnichenko, D., Filippov, M.
  & Dolgov, S. 2009. Effects of daminozide on
            somatic embryogenesis from immature and mature embryos of wheat. Australian
              Journal of Crop Science 3(2): 83-94.
  
          Moghaieb, R.E., El-Arabi, N.I., Momtaz,
            O.A., Youssef, S.S. & Soliman, M.H. 2010. Genetic transformation of mature
            embryos of bread (T. aestivum) and pasta (T.
              durum) wheat genotypes. Genetically Modified Crops 1(2):
            87-93.  
  
          Murashige, T. & Skoog, F. 1962. A revised medium for
            rapid growth and bioassays with tobacco cell cultures. Physiologia Plantarum 15(3): 473-497.
  
          Murín, R., Mészáros, K., Nemecek, P., Kuna, R. & Faragó,
            J. 2012. Regeneration of immature and mature embryos from diverse sets of wheat
            genotypes using media containing different auxins. Acta Agronomica Hungarica60(2): 97-108. 
  
          Nabors, M., Kroskey, C. & McHugh, D. 1982. Green spots are
            predictors of high callus growth rates and shoot formation in normal and in
            salt stressed tissue cultures of oat (Avena sativa L.). Zeitschrift für Pflanzenphysiologie105(4):
            341-349.
  
          Ortiz, J.P.A., Fama, G., Vallejos, R.H. & de Halac, I.N. 1996. Cytodifferentiation and cell organization
            in the somatic embryogenesis of wheat (Triticum aestivum L). Biocell 20(1): 61-66.
  
          Ozbay, A. & Özgen, M.
            2010. Is heterosis noticeable in the callus response of winter durum wheat F1
            hybrids? Biologia Plantarum 54(4):
            769-772.
  
          Ozias-Akin, P. & Vasil, K. 1982. Plant
            regeneration from cultured immature embryos and inflorescences of Triticum aestivum L. (wheat): Evidence for somatic
            embryogenesis. Protoplasma 110(1982): 95-105.
  
          Parmar, S., Sainger, M., Chaudhary, D. & Jaiwal,
            P. 2012. Plant regeneration from mature embryo of commercial Indian bread wheat
            (Triticum aestivum L.) cultivars. Physiology
              and Molecular Biology of Plants 18(2): 177-183.
  
          Patnaik, D., Vishnudasan, D. & Khurana, P. 2006.
            Agrobacterium-mediated transformation of mature embryos of Triticum aestivum and Triticum durum. Current Science 91(3):
            307-317. 
  
          Phillips, G.C. 2004. In
            vitro morphogenesis in plants-recent advances. In Vitro Cellular and
              Developmental Biology-Plant 40(4): 342-345.
  
          Rashid, U., Ali, S.,
            Ali, G.M., Ayub, N. & Masood, M.S. 2009.
            Establishment of an efficient callus induction and plant regeneration system in
            Pakistani wheat (Triticum aestivum) cultivars. Electronic Journal of Biotechnology 12(3): 4-5.
  
          Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C. & Job, D. 2012. Seed
            germination and vigor. Annual Review of Plant Biology 63: 507-533.
  
          Repellin, A., Baga, M.,
            Jauhar, P. & Chibbar, R. 2001. Genetic enrichment
            of cereal crops via alien gene transfer: new challenges. Inorganic nutrient manipulation
            in the induction of embryogenic callus from immature embryos of wheat. Plant
              Cell Tissue and Organ Culture 64(2-3): 159-183.   
  
          Ren, J., Wang, X. &
            Yin, J. 2010. Dicamba and sugar effects on callus induction and plant
            regeneration from mature embryo culture of wheat. Agricultural Sciences in
              China 9(1): 31-37.
  
          Shah, M., Jabeen, M. & Ilahi, I. 2003. In
            vitro callus induction, its proliferation and regeneration in seed explants
            of wheat (Triticum aestivum L.) Var.LU-26S. Pakistan
              Journal of Botany 35(2): 209-217.
  
          Tang, Z., Ren, Z., Wu,
            F., Fu, S., Wang, X. & Zhang, H. 2006. The selection of transgenic
            recipients from new elite wheat cultivars and study on its plant regeneration
            system. Agricultural Sciences in China 5(6): 417-424. 
  
          Yang, S., Xu, K., Wang,
            Y., Bu, B., Huang, W., Sun, F., Liu, S. & Xi, Y. 2015. Analysis of biochemical
            and physiological changes in wheat tissue culture using different germplasms
            and explant types. Acta Physiologiae Plantarum 37: 120.
  
          Yaseen, M., Ahmad, T., Sablok, G., Standardi, A. &
            Hafiz, I.A. 2013. Review: Role of carbon sources for in vitro plant
            growth and development. Molecular Biology Reports 40(4): 2837-2849.
  
          Yin, G., Wang, Y., She,
            M., Du, L., Xu, H., Ma, J. & Ye, X. 2011. Establishment of a highly
            efficient regeneration system for the mature embryo culture of wheat. Agricultural
              Sciences in China 10(1): 9-17. 
  
          Yu, Y., Wang, J., Zhu,
            M.L. & Wei, Z.M. 2008.  Optimization of mature embryo-based high
            frequency callus induction and plant regeneration from elite wheat cultivars
            grown in China. Plant Breeding 127(3): 249-255.
  
          Zale, J.M., Borchardt-Wier, H., Kidwal, K.K. & Stebar, C.M. 2004. Callus induction and plant regeneration
            from mature embryos of a diverse set of wheat genotypes. Plant Cell Tissue
              and Organ Culture 76(3): 277-281.
  
          Zhao, L., Liu, S. &
            Song, S. 2010. Optimization of callus induction and plant regeneration from
            germinating seeds of sweet sorghum (Sorghum Bicolor Moench). African Journal of Biotechnology 9(16): 2367-2374.
  
          
             
          
          *Corresponding author; email: tamimi@ju.edu.jo