Sains Malaysiana 50(4)(2021): 929-943
http://doi.org/10.17576/jsm-2021-5004-05
Teknologi
Georuang dalam Analisis Potensi dan Pemetaan Risiko Tsunami di Pantai Barat
Semenanjung Malaysia
(Geospatial
Technology in Potential Analysis and Mapping of Tsunami Risk at West Coast
Peninsular Malaysia)
NOOR SUHAIZA SAUTI1,2*, MOHD EFFENDI DAUD1 MASIRI KAAMIN3 & NAJIHAH REMALI4
1Fakulti Kejuruteraan Awam dan Alam Bina, Universiti Tun Hussein
Onn Malaysia, 86400 Batu Pahat,
Johor Darul Takzim, Malaysia
2Jabatan
Pendidikan Politeknik dan Kolej Komuniti (JPPKK), Kementerian Pendidikan Malaysia
61200 Putrajaya, Wilayah Persekutuan
Malaysia
3Neo Environmental Technology,
Pusat Pengajian Diploma,
Universiti Tun Hussein Onn Malaysia,
84600 Pagoh,
Muar, Johor Darul Takzim, Malaysia
4MCS
Management Sdn Bhd, 40460
Shah Alam, Selangor, Malaysia
Received: 30 September 2019/Accepted: 18 September 2020
ABSTRAK
Gempa bumi yang berlaku pada 26 Disember 2004 telah mencetuskan gelombang tsunami terbesar menyebabkan limpahan tersebar di seluruh Lautan Hindi. Impaknya mengakibatkan kerosakan yang luas, kehilangan harta benda dan kehidupan terjejas di sepanjang pantai meliputi 12 negara di sepanjang Lautan Hindi. Kehilangan nyawa juga melibatkan rakyat dari 27 negara dari bahagian lain di dunia termasuklah di Malaysia terutamanya di pantai barat Semenanjung Malaysia. Kesignifikanan daripada bencana tsunami di Lautan Hindi ini, suatu tindakan persediaan dan mitigasi perlu dilaksanakan oleh pihak pengurusan bencana untuk menilai dan mengambil langkah yang bersesuaian untuk menangani dan mengurangkan risiko bencana tsunami. Kajian ini adalah untuk menganalisis potensi dan memetakan kawasan risiko tsunami di kawasan persisiran pantai barat Semenanjung Malaysia. Analisis potensi bahaya tsunami bagi penduduk di pantai barat Semenanjung Malaysia khususnya di Kota Kuala Muda, Kedah dilaksanakan menggunakan perisian Tsunami Display Program untuk memodelkan mekanisme pembentukan tsunami, perambatan gelombang dan tahap limpahan tsunami. Seterusnya bagi mengenal pasti risiko iaitu tahap kerentanan sesuatu kawasan terhadap bahaya tsunami, teknologi georuangl diaplikasikan untuk menganalisis lokasi kawasan yang berbahaya dan selamat dengan mengambil kira faktor-faktor seperti guna tanah, jarak kawasan daripada persisiran pantai dan permukaan topografi atau kecerunan serta tinggi sesuatu kawasan. Fungsi tindihan lapisan dan pengelasan dalam teknologi georuang digunakan untuk mengelaskan kawasan kepada zon sangat bahaya, zon bahaya, zon sederhana dan zon selamat sekiranya berlaku tsunami. Hasil kajian ini mengenal pasti kawasan berpotensi terjejas selepas bencana iaitu Kampung Kuala
Sungai Muda, Kampung Masjid, Kampung Kepala Jalan dan
Kampung Padang Salin (Kampung Hujong Permatang) dengan purata jarak daripada garisan pantai kurang daripada 400 m serta peta kawasan berisiko berpandukan tahap kerentanan bencana tsunami di Kota Kuala Muda, Kedah. Sumbangan daripada kajian ini diharap dapat membantu pihak berkenaan dalam urusan persediaan, perancangan dan mitigasi bencana tsunami pada masa akan datang.
Kata kunci: Georuang; kerentanan; pemetaan; simulasi tsunami
ABSTRACT
An
earthquake that occurred on December 26, 2004, triggered the most massive
tsunami wave that spread over the entire Indian Ocean. The impacts of
widespread damage have caused loss of property and impaired life along the
coast covering 12 countries along the Indian Ocean. Loss of life has also
involved people from 27 countries from other parts of the world including
Malaysia especially on the west coast of Peninsular
Malaysia. Significantly from the tsunami disaster in this Indian Ocean, a
preparatory and mitigation action needs to be undertaken by disaster management
to assess and take appropriate measures to address and mitigate the risks of
the tsunami. This study is to analyze the potential and map the tsunami risk
areas on the west coast of Peninsular Malaysia. The tsunami hazard analysis for
residents on the west coast of Peninsular Malaysia especially in Kuala Muda
City, Kedah was implemented using the Tsunami Display Program software to model
the tsunami formation mechanism, wave propagation and tsunami overflow.
Furthermore, to identify the risks of the vulnerability of an area to tsunami
hazard, geospatial technology is applied to analyze the location of hazardous
and safe areas by taking into account factors such as land use, distance from
coastal and topographic or slope surfaces and elevated areas. Layer overlays
and classification in geospatial technology are used to classify areas into
extremely dangerous zones, hazard zones, moderate zones and safe zones in the
event of a tsunami. The results of this study identified potential areas
affected by the disasters such as Kampung Kuala Sungai Muda, Kampung Masjid,
Kampung Kepala Jalan and Kampung Padang Salin (Kampung Hujong Permatang) with an average distance of fewer than 400 m of
coastline and the map of hazardous areas based on the tsunami disaster
susceptibility in Kota Kuala Muda, Kedah. Contributions from this study are
expected to assist the stakeholders in preparing, planning and mitigating the
tsunami disaster in the future.
Keywords:
Geospatial; mapping; tsunami simulation; vulnerability
REFERENCES
Mohon berikan maklumat lanjut untuk Ismail et al. (2004)
yang dipetik dalam teks.
Aguirre Ayerbe, I., Martinez
Sanchez, J., Aniel-Quiroga Zorrilla,
Í., González-Riancho, P., Merino González-Pardo, M.,
Al-Yahyai, S., González Rodríguez, E.M. & Medina Santamaría, R. 2018. From tsunami risk assessment to
disaster risk reduction the case of Oman. Natural Hazards and Earth System
Sciences 18(8): 2241-2260.
Carayannis, G.P. 2002. Evaluation of the threat of mega tsunami generation from
postulated massive slope failures of island strato volcanoes on La Palma, Canary Islands, and on the island of Hawaii. Science
of Tsunami Hazards 20(5): 251-277.
Chaturvedi, S.K., Srivastava, P.K. & Guven, U. 2017. A brief review on tsunami early warning
detection using BPR approach and post analysis by SAR satellite dataset. Journal
of Ocean Engineering and Science 2(2): 83-89.
Cho, M., Shin, S., Yoon, H.D. & Cox, D.T. 2017.
Numerical simulation of tsunami force acting on vertical walls. Journal of
Coastal Research 79: 289-293.
Dall’Osso, F., Bovio, L., Cavalletti,
A., Immordino, F., Gonella,
M. & Gabbianelli, G. 2010. A novel approach (the
CRATER method) for assessing tsunami vulnerability at the regional scale using
ASTER imagery. Italian Journal of Remote Sensing 42(2): 55-74.
Daud, M.E., Sagiya, T., Kimata,
F. & Kato, T. 2008. Long-baseline quasi-real time kinematic GPS data
analysis for early tsunami warning. Earth, Planets and Space 60(12):
1191-1195.
ESRI. 2000. Challenges for GIS in Emergency
Preparedness and Response, An ESRI White Paper. US: Environmental Systems
Research Institute (ESRI).
Hebenstreit, G.T. 2001. Tsunami Research at the End of a Critical Decade.
Netherlands: Springer.
Intergovernmental Oceanographic Commission. 2009. Tsunami
Risk Assessment and Mitigation for the Indian Ocean; Knowing your Tsunami Risk
- and What to do About It. Paris: Intergovernmental Oceanographic
Commission.
Ismail, H., Abd Wahab, A.K., Mohd Amin, M.F., Mohd Yunus,
M.Z., Jaffar Sidek, F. & Esfandier,
J.B. 2013. A 3-tier tsunami vulnerability assessment technique for the
north-west coast of Peninsular Malaysia. Natural Hazards 63(2): 549-573.
JPS. 2005. Laporan Penyiasatan Pasca-Tsunami.
Malaysia: Jabatan Pengairan dan Saliran Malaysia (JPS).
John, W. & Kathie, W. 1997. How Earthquakes
Happen. US: United State Geological Survey.
Kappes, M.S., Papathoma-Koehle, M. & Keiler, M. 2012. Assessing physical vulnerability for
multi-hazards using an indicator-based methodology. Applied Geography 32
(2): 577-590.
Komoo, I. 2005. Bencana Tsunami 26.12.04
Di Malaysia: Kajian Impak Alam Sekitar, Sosio-ekonomi dan Kesejahteraan Masyarakat. Malaysia: Institut Alam Sekitar dan
Pembangunan (LESTARI) & Akademi Sains Malaysia.
Majlis Keselamatan Negara
(2005). Arahan Majlis Keselamatan Negara No. 20: Dasar dan Mekanisma Pengurusan Bencana, Malaysia.
Malaysia: Majlis Keselamatan Negara.
Najihah, R., Effendi, D.M., Hairunnisa, M.A. & Masiri, K. 2014. Tsunami vulnerability assessment mapping
for the west coast of Peninsular Malaysia using a geographical information
system (GIS). In IOP Conference Series: Earth and Environmental Science 18(1).
Papathoma, M., Dominey-Howes, D., Zong,
Y. & Smith, D. 2003. Assessing tsunami vulnerability, an example from Herakleio, Crete. Natural Hazards and Earth System
Science 3(5): 377-389.
Paulatto, M., Pinat, T. & Romanelli, F. 2007.
Tsunami hazard scenarios in the Adriatic Sea domain. Natural Hazards and
Earth System Science 7(2): 309-325.
Rantanen, H.T. 1998. GIS in Emergency Management. Prehospital and Disaster
Medicine 13(S1): S19.
Sauti, N.S., Daud, M.E. & Kaamin,
M. 2020. Construction of an integrated social vulnerability index to identify
spatial variability of exposure to seismic hazard in Pahang, Malaysia. International
Journal of Design & Nature and Ecodynamics 15(3): 365-372.
Setyonegoro, W. 2011. Tsunami numerical simulation Applied to tsunami early warning
system along Sumatra region. Jurnal Meteorologi dan Geofisika 12(1): 21-32.
Sinaga, T.P., Nugroho, A., Lee, Y.W. & Suh, Y.
2011. GIS mapping of tsunami vulnerability: Case study of the Jembrana Regency in Bali, Indonesia. KSCE Journal of
Civil Engineering 15(3): 537-543.
Teh, S.Y., Koh, H.L., Moh, Y.T., DeAngelis, D.L.
& Jiang, J. 2011. Tsunami risk mapping simulation for Malaysia. WIT
Transactions on the Built Environment 119: 3-14.
Tomaszewski, B. 2020. Geographic Information System
(GIS) for Disaster Management. New York: Tailor & Francis Group.
US Department of Energy 2002. Vulnerability
Assessment Methodology, Electric Power Infrastructure. United State: US
Department of Energy.
USGS 2012. Earthquake Hazards Program. United
States: United States Geological Survey (USGS).
Van Westen, C.J. 2013. Remote sensing
and GIS for natural hazards assessment and disaster risk management. Treatise
on Geomorphology 3: 259-298.
Watts, P., Grilli, S.T.,
Kirby, J.T., Fryer, G.J. & Tappin, D.R. 2003.
Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards and
Earth System Sciences 3(5): 391-402.
*Corresponding author; email:
masiri@uthm.edu.my
|