Sains Malaysiana 50(5)(2021): 1255-1265

http://doi.org/10.17576/jsm-2021-5005-06

 

Hercide Atrazine Alters the Microbiota of the Filamentous Green Alga Cladophora sp. Cultured from Thailand

(Herbisid Atrazin Mengubah Mikrobiota Alga Hijau Berfilamen Cladophora sp. yang Dikultur dari Thailand)

 

ANCHITTHA SATJARAK1,2*, JITTRA PIAPUKIEW2,3, WIKROM CHANTHAPATCHOT2, KARNJANA RUEN-PHAM2 & ALISA S. VANGNAI3,4

 

1Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, 10330 Bangkok, Thailand

 

2Department of Botany, Faculty of Science, Chulalongkorn University, 10330 Bangkok, Thailand

 

3Biocatalyst and Environmental Biotechnology Research Unit, Faculty of Science, Chulalongkorn University, 254 Phayathai Rd., Pathumwan, 10330 Bangkok, Thailand

 

4Department of Biochemistry, Faculty of Science, Chulalongkorn University, 10330 Bangkok, Thailand

 

Received: 15 April 2020/Accepted: 6 October 2020

 

ABSTRACT

The attached green alga Cladophora known to harbor microbiota that play important roles in ecosystem, is one of the most common freshwater filamentous green algae in rivers globally, including those in the northern part of Thailand. These rivers mostly run through agricultural regions where herbicides are heavily used to improve crop quality and quantity. The extensively-used herbicide atrazine persists in soil sediments through transport by surface runoff to rivers. The effect of such herbicide contamination on Cladophora microbiota in Thailand have not been investigated. To acquire this information, 16S rDNA amplicons were used to compare microbiota of Cladophora sp. cultures treated with a spectrum of atrazine concentrations. The results showed that the Cladophora microbiome included at least 106 possible Operational taxonomic units (OTUs) representing twelve bacterial phyla which are Acidobacteria, Actinobacteria, Armatimonadetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Epsilonbacteraeota, Nitrospirae, Patescibacteria, Planctomycetes, Proteobacteria, and WPS-2, representing both core and local algal bacteria. The presence of atrazine was also correlated with changes in richness of bacterial taxa suggesting that these algal epibiotic bacteria were differently affected by atrazine treatments.

 

Keywords: 16S rDNA amplicons; atrazine; Cladophora; microbiomes

 

ABSTRAK

Alga hijau Cladophora telah diketahui melindungi mikrobiota yang memainkan peranan penting dalam ekosistem, ia adalah salah satu alga hijau filamen air tawar yang biasa dijumpai dalam sungai di seluruh dunia, termasuk di bahagian utara Thailand. Sungai ini kebanyakannya merentasi kawasan pertanian di mana herbisid banyak digunakan untuk meningkatkan kualiti dan kuantiti tanaman. Herbisid atrazin yang digunakan secara meluas kekal di dalam endapan tanah secara pengangkutan melalui larian permukaan ke sungai. Kesan pencemaran herbisid ke atas mikrobiota Cladophora di Thailand masih belum pernah dijalankan. Untuk memperoleh maklumat ini, amplikon 16S rDNA digunakan untuk membandingkan kultur mikrobiota Cladophora sp. yang dirawat dengan spektrum kepekatan atrazin. Hasil kajian menunjukkan bahawa mikrobiom Cladophora merangkumi sekurang-kurangnya 106 kemungkinan unit operasi taksonomi (OUT) yang mewakili dua belas filum bakteria seperti Acidobacteria, Actinobacteria, Armatimonadetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Epsilonbacteraeota, Nitrospirae, Patescibacteria, Planctomycetes, Proteobacteria dan WPS-2, yang mewakili kedua-dua bakteria alga teras dan tempatan. Kehadiran atrazin juga turut dikaitkan dengan perubahan kekayaan taksa bakteria yang mencadangkan bahawa bakteria epibiotik alga ini dipengaruhi secara berbeza oleh rawatan atrazin.

 

Kata kunci: Amplikon 16S rDNA; atrazin; Cladophora; mikrobiom

 

REFERENCES

Alcaraz, L.D., Peimbert, M., Barajas, H.R., Dorantes-Acosta, A.E., Bowman, J.L. & Arteaga-Vázquez, M.A. 2018. Marchantia liverworts as a proxy to plants’ basal microbiomes. Scientific Reports 8(1): 12712.

Bohuss, I., Rékasi, T., Szikora, S., Barkács, K., Záray, G. & Ács, É. 2005. Interaction of acetochlor and atrazine with natural freshwater biofilms grown on polycarbonate substrate in Lake Velence (Hungary). Microchemical Journal 79: 201-205.

Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F. & Bai, Y. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37(8): 852-857.

Braus, M.J., Graham, L.E. & Whitman, T.L. 2017. Spatiotemporal dynamics of the bacterial microbiota on lacustrine Cladophora glomerata (Chlorophyta). Journal of Phycology 53(6): 1255-1262.

Byappanahalli, M.N., Sawdey, R., Ishii, S., Shively, D.A., Ferguson, J.A., Whitman, R.L. & Sadowsky, M.J. 2009. Seasonal stability of Cladophora-associated Salmonella in Lake Michigan watersheds. Water Research 43(3): 806-814.

Byappanahalli, M.N., Whitman, R.L., Shively, D.A., Ferguson, J., Ishii, S. & Sadowsky, M.J. 2007. Population structure of Cladophora-borne Escherichia coli in nearshore water of Lake Michigan. Water Research 41(16): 3649-3654.

Byappanahalli, M.N., Shively, D.A., Nevers, M.B., Sadowsky, M.J. & Whitman, R.L. 2003. Growth and survival of Escherichia coli and enterococci populations in the macro-alga Cladophora (Chlorophyta). FEMS Microbiology Ecology 46(2): 203-211.

Chen, Q., Yang, B., Wang, H., He, F., Gao, Y. & Scheel, R.A. 2015. Soil microbial community toxic response to atrazine and its residues under atrazine and lead contamination. Environmental Science and Pollution Research 22(2): 996-1007.

Chun, C.L., Ochsner, U., Byappanahalli, M.N., Whitman, R.L., Tepp, W.H., Lin, G., Johnson, E.A., Peller, J. & Sadowsky, M.J. 2013. Association of toxin-producing Clostridium botulinum with the macroalga Cladophora in the Great Lakes. Environmental Science and Technology 47(6): 2587-2594.

Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. 2012. jModelTest 2: More models, new heuristics and parallel computing. Nature Methods 9(8): 772.

De Souza, M.L., Seffernick, J., Martinez, B., Sadowsky, M.J. & Wackett, L.P. 1998. The atrazine catabolism genes atzABC are widespread and highly conserved. Journal of Bacteriology 180(7): 1951-1954.

Department of Agriculture. 2019. Registered Hazardous Substance. Department of Agriculture, Ministry of Agriculture and Cooperatives. Accessed on 18 December 2019.

Desitti, C., Beliavski, M., Tarre, S. & Green, M. 2017. Stability of a mixed microbial population in a biological reactor during long term atrazine degradation under carbon limiting conditions. International Biodeterioration and Biodegradation 123: 311-319.

Devers, M., Henry, S., Hartmann, A. & Martin-Laurent, F. 2005. Horizontal gene transfer of atrazine‐degrading genes (atz) from Agrobacterium tumefaciens St96‐4 pADP1: Tn5 to bacteria of maize‐cultivated soil. Pest Management Science: Formerly Pesticide Science 61(9): 870-880.

Drouin, P., Sellami, M., Prévost, D., Fortin, J. & Antoun, H. 2010. Tolerance to agricultural pesticides of strains belonging to four genera of Rhizobiaceae. Journal of Environmental Science and Health Part B 45(8): 757-765.

Drzyzga, O. 2012. The strengths and weaknesses of Gordonia: A review of an emerging genus with increasing biotechnological potential. Critical Reviews in Microbiology 38(4): 300-316.

EPA 2003. Interim Reregistration Eligibility Decision for Atrazine. Washington: U.S. Environmental Protection Agency (EPA).

Esquirol, L., Peat, T.S., Wilding, M., Hartley, C.J., Newman, J. & Scott, C. 2018. A novel decarboxylating amidohydrolase involved in avoiding metabolic dead ends during cyanuric acid catabolism in Pseudomonas sp. strain ADP. PLoS ONE 13(11): e0206949.

Fang, H., Zhang, H., Han, L., Mei, J., Ge, Q., Long, Z. & Yu, Y. 2018. Exploring bacterial communities and biodegradation genes in activated sludge from pesticide wastewater treatment plants via metagenomic analysis. Environmental Pollution 243: 1206-1216.

Faria, M., Bordin, N., Kizina, J., Harder, J., Devos, D. & Lage, O.M. 2018. Planctomycetes attached to algal surfaces: Insight into their genomes. Genomics 110(5): 231-238.

Gadkari, D. 1991. Conjugation between two Escherichia coli strains and between Escherichia coli (donor) and Azospirillum brasilense (recipient) in the presence of various herbicides. Toxicological and Environmental Chemistry 30(3-4): 211-217.

Graham, L.E., Knack, J.J., Graham, M.E., Graham, J.M. & Zulkifly, S. 2015. A metagenome for lacustrine Cladophora (Cladophorales) reveals remarkable diversity of eukaryotic epibionts and genes relevant to materials cycling. Journal of Phycology 51(3): 408-418.

Ishii, S., Yan, T., Shively, D.A., Byappanahalli, M.N., Whitman, R.L. & Sadowsky, M.J. 2006. Cladophora (Chlorophyta) spp. harbor human bacterial pathogens in nearshore water of Lake Michigan. Applied and Environmental Microbiology 72(7): 4545-4553.

Katoh, K., Asimenos, G. & Toh, H. 2009. Multiple alignment of DNA sequences with MAFFT. D. Posada. In Bioinformatics for DNA Sequence Analysis, New Jersey: Humana Press. pp. 39-64.

Kruawal, K., Sacher, F., Werner, A., Müller, J. & Knepper, T.P. 2005. Chemical water quality in Thailand and its impacts on the drinking water production in Thailand. Science of The Total Environment 340(1-3): 57-70.

Lage, O.M. & Bondoso, J. 2011. Planctomycetes diversity associated with macroalgae. FEMS Microbiology Ecology 78(2): 366-375.

Laungsuwon, R. & Chulalaksananukul, W. 2013. Antioxidant and anticancer activities of freshwater green algae, Cladophora glomerata and Microspora floccosa, from Nan River in northern Thailand. Maejo International Journal of Science and Technology 7(2): 181-188.

Lebrero, R., Ángeles, R., Pérez, R. & Muñoz, R. 2016. Toluene biodegradation in an algal-bacterial airlift photobioreactor: Influence of the biomass concentration and of the presence of an organic phase. Journal of Environmental Management 183: 585-593.

Liao, X., Chen, C., Zhang, J., Dai, Y., Zhang, X. & Xie, S. 2015. Operational performance, biomass and microbial community structure: Impacts of backwashing on drinking water biofilter. Environmental Science and Pollution Research 22(1): 546-554.

Liu, X., Chen, K., Chuang, S., Xu, X. & Jiang, J. 2019. Shift in bacterial community structure drives different atrazine-degrading efficiencies. Frontiers in Microbiology 10: 88.

Marri, P.R., Hao, W. & Golding, G.B. 2007. The role of laterally transferred genes in adaptive evolution. BMC Evolutionary Biology 7(1): S8.

Mikhailov, I.S., Zakharova, Y.R., Bukin, Y.S., Galachyants, Y.P., Petrova, D.P., Sakirko, M.V. & Likhoshway, Y.V. 2019. Co-occurrence networks among bacteria and microbial eukaryotes of lake Baikal during a spring phytoplankton bloom. Microbial Ecology 77(1): 96-109.

Miller, M.A., Pfeiffer, W. & Schwartz, T. 2012. The CIPRES science gateway: Enabling high-impact science for phylogenetics researchers with limited resources. In Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the eXtreme to the Campus and Beyond. pp. 1-8.

Ochman, H., Lawrence, J.G. & Groisman, E.A. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299-304.

Olapade, O.A., Depas, M.M., Jensen, E.T. & McLellan, S.L. 2006. Microbial communities and fecal indicator bacteria associated with Cladophora mats on beach sites along lake Michigan shores. Applied and Environmental Microbiology 72(3): 1932-1938.

Parulekar, N.N., Kolekar, P., Jenkins, A., Kleiven, S., Utkilen, H., Johansen, A., Sawant, S., Kulkarni-Kale, U., Kale, M. & Sæbø, M. 2017. Characterization of bacterial community associated with phytoplankton bloom in a eutrophic lake in South Norway using 16S rRNA gene amplicon sequence analysis. PLoS ONE 12(3): e0173408.

Peerapornpisal, Y., Amornledpison, D., Rujjanawate, C., Ruangrit, K. & Kanjanapothi, D. 2006. Two endemic species of macroalgae in Nan river, northern Thailand, as therapeutic agents. ScienceAsia 32(Supplement 1): 71-76.

Phewnil, O., Panichsakpatana, S., Tungkananuruk, N. & Pitiyont, B. 2010. Atrazine transport from the maize (Zea mays L.) cultivated upland soil in Huay Kapo watershed, Nam Nao district, Phetchabun province, Thailand. Thai Journal of Agricultural Science 43(3): 119-127.

Phewnil, O., Tungkananurak, N., Panichsakpatana, S., Pitiyont, B., Siripat, N. & Watanabe, H. 2012. The residues of atrazine herbicide in stream water and stream sediment in Huay Kapo watershed, Phetchabun province, Thailand. Environment and Natural Resources Journal 10(1): 42-52.

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J. & Glöckner, F.O. 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research 41(D1): D590-D596.

Radosevich, M., Traina, S.J., Hao, Y.L. & Tuovinen, O.H. 1995. Degradation and mineralization of atrazine by a soil bacterial isolate. Applied and Environmental Microbiology 61(1): 297-302.

Ramanan, R., Kang, Z., Kim, B.H., Cho, D.H., Jin, L., Oh, H.M. & Kim, H.S. 2015. Phycosphere bacterial diversity in green algae reveals an apparent similarity across habitats. Algal Research 8: 140-144.

Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539-542.

Saltykova, A. 2015. Identifying prokaryotic consortia that live in close interaction with algae. Masters Thesis. Ghent: Ghent University (Unpublished).

Sangchan, W., Bannwarth, M., Ingwersen, J., Hugenschmidt, C., Schwadolrf, K. Thavornyutikarn, P., Pansombat, K. & Streck, T. 2014. Monitoring and risk      assessment of pesticides in a tropical river of an agricultural watershed in northern Thailand. Environmental Monitoring and Assessment 186(2): 1083-1099.

Satsuma, K. 2009. Complete biodegradation of atrazine by a microbial community isolated from a naturally derived river ecosystem (microcosm). Chemosphere 77(4): 590-596.

Sherwood, A.R. & Presting, G.G. 2007. Universal primers amplify a 23S rDNA plastid marker in eukaryotic algae and cyanobacteria. Journal of Phycology 43(3): 605-608.

Shukla, A. & Devine, M.D. 2008. Basis of crop selectivity and weed resistance to triazine herbicides. In The Triazine Herbicides: 50 Years Revolutionizing Agriculture, edited by LeBaron, H.M., McFarland, J.E. & Burnside, O.C. Oxford: Elsevier. pp. 111-118.

Sohn, J.H., Kwon, K.K., Kang, J.H., Jung, H.B. & Kim, S.J. 2004. Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. International Journal of Systematic and Evolutionary Microbiology 54(5): 1483-1487.

Stamatakis, A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9): 1312-1313.

Sugiura, K. 2009. Effects of chemicals and metal ions on microcosms: Comparison of community metabolism to single-species responses to toxicants. Japanese Journal of Environmental Toxicology 12(1): 41-53.

Thiamdao, S., Boo, G.H., Boo, S.M. & Peerapornpisal, Y., 2012. Diversity of edible Cladophora (Cladophorales, Chlorophyta) in northern and northeastern Thailand, based on morphology and nuclear ribosomal DNA sequences. Chiang Mai Journal of Science 39(2): 300-310.

Topp, E., Zhu, H., Nour, S.M., Houot, S., Lewis, M. & Cuppels, D. 2000. Characterization of an atrazine-degrading Pseudaminobacter sp. isolated from Canadian and French agricultural soils. Applied and Environmental Microbiology 66(7): 2773-2782.

Tóth, E.M., Vengring, A., Homonnay, Z.G., Kéki, Z., Spröer, C., Borsodi, A.K., Márialigeti, K. & Schumann, P. 2014. Phreatobacter oligotrophus gen. nov., sp. nov., an alphaproteobacterium isolated from ultrapure water of the water purification system of a power plant. International Journal of Systematic and Evolutionary Microbiology 64(3): 839-845.

Trebst, A. 2008. The mode of action of triazine herbicides in plants. In The Triazine Herbicides: 50 Years Revolutionizing Agriculture, edited by LeBaron, H.M., McFarland, J.E. & Burnside, O.C. Oxford: Elsevier. pp. 101-110.

Udiković-Kolić, N., Scott, C. & Martin-Laurent, F. 2012. Evolution of atrazine-degrading capabilities in the environment. Applied Microbiology and Biotechnology 96(5): 1175-1189.

Vargha, M., Takáts, Z. & Márialigeti, K. 2005. Degradation of atrazine in a laboratory scale model system with Danube river sediment. Water Research 39(8): 1560-1568.

Vos, M., Hesselman, M.C., te Beek, T.A., van Passel, M.W. & Eyre-Walker, A. 2015. Rates of lateral gene transfer in prokaryotes: High but why? Trends in Microbiology 23(10): 598-605.

Wallace, J.G. & May, G. 2018. Endophytes: The other maize genome. In The Maize Genome, edited by Bennetzen, J., Flint-Garcia, S, Hirsch, C., & Tuberosa, R. Cham: Springer International. pp. 213-246.

Weiner, J.A., DeLorenzo, M.E. & Fulton, M.H. 2007. Atrazine induced species-specific alterations in the subcellular content of microalgal cells. Pesticide Biochemistry and Physiology 87(1): 47-53.

Whitman, R.L., Shively, D.A., Pawlik, H., Nevers, M.B. & Byappanahalli, M.N. 2003. Occurrence of Escherichia coli and enterococci in Cladophora (Chlorophyta) in nearshore water and beach sand of Lake Michigan. Applied and Environmental Microbiology 69(8): 4714-4719.

Zhang, Y., Meng, D., Wang, Z., Guo, H., Wang, Y., Wang, X. & Dong, X. 2012. Oxidative stress response in atrazine-degrading bacteria exposed to atrazine. Journal of Hazardous Materials 229-230: 434-438.

Zulkifly, S., Graham, J.M., Young, E.B., Mayer, R.J., Piotrowski, M.J., Smith, I. & Graham, L.E. 2013. The genus Cladophora Kützing (Ulvophyceae) as a globally distributed ecological engineer. Journal of Phycology 49: 1-17.

Zulkifly, S., Hanshew, A., Young, E.B., Lee, P., Graham, M.E., Graham, M.E., Piotrowski, M. & Graham, L.E. 2012. The epiphytic microbiota of the globally widespread macroalga Cladophora glomerata (Chlorophyta, Cladophorales). American Journal of Botany 99(9): 1541-1552.

 

*Corresponding author; email: anchittha.s@chula.ac.th

 

 

   

 

previous