Sains Malaysiana 50(5)(2021): 1321-1328

http://doi.org/10.17576/jsm-2021-5005-12

 

Ultrasound-Assisted Extraction using Response Surface Methodology for Extracting Flavonoids from Padina australis

(Pengekstrakan Berbantu Ultrabunyi menggunakan Kaedah Gerak Balas Permukaan untuk Mengekstrak Flavonoid daripada Padina australis)

 

BINA LOHITA SARI1*, TRI SAPTARI HARYANI2, TRIASTINURMIATININGSIH2 & DINDA RIZKI AMALIA1

 

1Pharmacy Study Program, Faculty of Mathematics and Science, Pakuan University, Jl. Pakuan PO Box 452, Bogor 16143, West Java, Indonesia

 

2Biology Study Program, Faculty of Mathematics and Science, Pakuan University, Jl. Pakuan PO Box 452, Bogor 16143, West Java, Indonesia

 

Received: 7 June 2020/Accepted: 27 September 2020

 

ABSTRACT

Seaweed or sea macroalgae are rich in potential compounds which can be used for the treatment of disease. Padina australis is one of the important brown macroalgae classes (Phaeophyes). One of the bioactive compounds of P. australis is a phenolic compound and its derivatives (flavonoid). In this research, P. australis was collected from Bayah Beach, Banten, Indonesia. For the extraction flavonoids from P. australis, ultrasound-assisted extraction (UAE) was employed. In this study, a three-level Box-Behnken design (BBD) and the response surface methodology (RSM) were employed to obtain the optimal combination of extraction conditions. The effects of several independent variables including temperature (30, 50, 70 ℃), extraction time (20, 40, 60 min) and ethanol concentration (30, 50, 70%) were investigated. The result showed that RSM was an accurate and reliable method in predicting the total flavonoid content with R2 value of 0.9935. The optimal UAE conditions for the highest yield of total flavonoid content were 49.70 ℃ in temperature, process time under 44.03 min, and 47.80% ethanol with 0.2162% total flavonoid content. Under the above conditions, the experimental value of total flavonoid content was 0.2144+ 0.0035%. The predicted and experimental values for total flavonoid from brown algae P. australis were not significant differences, it indicating that the developed models are accurate. Therefore, UAE using RSM is effective for the extraction of flavonoid from P. australis.

 

Keywords: Box-Behnken design; optimization; P. australis; total flavonoid; ultrasound-assisted extraction

 

ABSTRAK

Rumpai laut atau makroalga kaya dengan sebatian berpotensi yang dapat digunakan untuk rawatan penyakit. Padina australis adalah salah satu kelas alga makro coklat yang penting (Phaephyes). Salah satu sebatian bioaktif P. australis adalah sebatian fenolik dan turunannya (flavonoid). Dalam penyelidikan ini, P. australis dikumpulkan dari Pantai Bayah, Banten, Indonesia. Untuk mengekstrak flavonoid daripada P. australis, pengekstrakan berbantu ultrabunyi (UAE) digunakan. Reka bentuk Box-Behnken tiga tahap (BBD) dan kaedah gerak balas permukaan (RSM) digunakan untuk mendapatkan gabungan keadaan pengekstrakan yang optimum. Kesan beberapa pemboleh ubah bebas termasuk suhu (30, 50, 70 ℃), masa reaksi (20, 40 60 min) dan kepekatan etanol (30, 50 70%) dikaji. Hasil kajian menunjukkan bahawa RSM adalah kaedah yang tepat dan boleh dipercayai dalam meramalkan jumlah kandungan flavonoid dengan nilai R2 0.9935. Keadaan UAE yang optimum untuk hasil tertinggi kandungan flavonoid adalah suhu 49.70 , masa proses di bawah 44.03 min dan 47.80% etanol dengan kandungan flavonoid 0.2162%. Di bawah keadaan ini, nilai uji kaji flavonoid adalah 0.2144+0.0035% yang sangat sesuai dengan nilai yang diramalkan oleh model. Oleh itu UAE menggunakan RSM berkesan untuk pengekstrakan flavonoid daripada P. australis.

 

Kata kunci: Kandungan flavonoid; pengekstrakan berbantu ultrabunyi; pengoptimuman; P. australis; reka bentuk Box-Behnken

 

REFERENCES

Alara, O.R., Abdurahman, N.H. & Olalere, O.A. 2018. Ethanolic extraction of bioactive compounds from Vernonia amygdalinga leaf using response surface methodology as an optimization tool. Journal of Food Measurement and Characterization 12(2): 1107-1122.

Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D.G. & Lightfoot, D.A. 2017. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 6(4): 1-23.

Arabi, S. & Sohrabi, M.R. 2013. Experimental design and response surface modelling for optimization of vat dye from water by Nano Zef Valent Iron (NZVI). Acta Chimica Slovenica 60(4): 853-860.

Box, G.E.P. & Cox, D.R. 1964. An analysis of transformations. Journal of the Royal Statistical Society 26(2): 211-243.

Chakraborty, P., Dey, S., Parch, V., Bhattacharya, S.S. & Ghosh, A. 2013. Design expert supported mathematical optimization and predictability study of Buccoadhesive pharmaceutical wafers of Loratading. BioMed Research International 2013: 1-12.

Chandrapala, J., Oliver, C.M., Kentish, S. & Ashokkumar, M. 2012. Use of power ultrasound to improve extraction and modify phase transitions in food processing. Journal of Food Reviews International 29(1): 67-91.

Elmoubarki, R., Taoufik, M., Moufti, A., Tiybsadum, H., Mahjoubi, F.S., Bouabi, Y., Qourzal, S., Abdennouri, M. & Barka, N. 2017. Box-Behnken experimental design for the optimization of methylene blue adsorption onto Aleppo pine cones. Journal of Materials and Environmental Sciences 8(6): 2184-2191.

Handayani, N.K. & Zuhrotun, A. 2017. Padina australis dan potensinya sebagai obat herbal antikanker, antibakteri dan antioksidan. Farmaka Suplemen 15(2): 90-96.

Karak, P. 2019. Biological activities of flavonoids: An overview. International Journal of Pharmaceutical Sciences and Research 10(4): 1567-1574.

Kutner, M.H., Naachtsheim, C.J., Neter, J. & Li, W. 2004. Applied Linear Statistical Models. 5th ed. New York: McGraw-Hill Irwin.

Ma, Y., Chen, J., Liu, D. & Ye, X. 2009. Simultaneous extraction of phenolic compounds of citrus peel extracts: Effect of ultrasound. Ultrasonics Sonochemistry 16(1): 57-62.

Meullemiestre, A., Petitcolas, E., Chemat, F., Maache-Rezzoug, Z. & Rezzoug, S.A. 2015. Impact of ultrasound on solid-liquid of phenolic compounds from maritime pine sawdust waste. Kinetics, optimization and large scale experiments. Ultrasonics Sonochemistry 28: 230-239.

Ruslin, M., Husain, A.F., Hajrah-Yusuf, A.S. & Subehan. 2018. Analysis of total flavonoid levels in Brown algae (Sargassum sp. and Padina sp.) as analgesic drug therapy. Asian Journal of Pharmaceutical and Clinical Research 11(7): 81-83.

Santoso, J., Podungge, F. & Sumaryanto, H. 2013. Chemical composition and antioxidant activity of tropical Brown algae Padina australis from Pramuka island district of Seribu Island, Indonesia. Jurnal Ilmu dan Teknologi Kelautan Tropis 5(2): 287-297.

Sembiring, E.N., Elya, B. & Sauriasari, R. 2018. Phytochemical screening, total flavonoid and total phenolic content and antioxidant activity of different parts of Caesalpinia bonduc (L.) Roxb. Pharmacognosy Journal 10(1): 123-127.

Setha, B., Gaspersz, F.F., Idris, A.P.S., Rahman, S. & Mailoa, M.N. 2013. Potential of seaweed Padina sp. as a source of antioxidant. International Journal of Scientific & Technology Research 2(6): 221-224.

Silberfeld, T., Bittner, L., Fernandez-Garcia, C., Cruaud, C., Rousseau, F., Reviers, B., Leliaert, F., Payri, C.E. & Clerk, O.D. 2013. Species diversity, phylogeny and large scale biogeographic patterns of the genus Padina (Phaeophyceae, Dictyotales). Journal Phycology 49(1): 130-142.

Sugiono, Widjanarko, S.B. & Adisoehono, L. 2014. Extraction optimization by response surface methodology and characterization of Fucoidan from Brown Seaweed Sargassum polycystum. International Journal of ChemTech Research 6(1): 195-205.

Sulastri, E., Zubair, M.S., Ana, N.I., Abidin, S., Hardani, R., Yulianti, R. & Aliya. 2018. Total phenolic, total flavonoid, quercetin content and antioxidant activity of standardized extract of Moringa oleifera leaf from regions with different elevation. Pharmacognosy Journal 10(6): 104-108.

Tatke, P. & Rajan, M. 2014. Comparison of conventional and novel extraction techniques for the extraction of Scopoletin from Convolvulus pluricaulis. Indian Journal of Pharmaceutical Education and Research 48(1): 27-31.

Tungmunnithum, D., Thongboonyou, A., Pholboon, A. & Yangsabai, A. 2018. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 5(3): 1-16.

Uma, D.B., Ho, C.W. & Aida, W.M.W. 2010. Optimization of extraction parameters of total phenolic compounds from Henna (Lawsonia inermis) leaves. Sains Malaysiana 39(1): 119-128.

Widyawati, P.S., Budianta, T.D.W., Kusuma, F.A. & Wijaya, E.L. 2014. Difference of solvent polarity to phytochemical content and antioxidant activity of Pluchea indicia Less Leaves. International Journal of Pharmacognosy and Phytochemical Research 6(4): 850-855.

Yuguchi, Y., Tran, V.T.T.T., Bui, L.M., Takebe, S., Suzuki, S., Nakajima, N., Kitamura, S. & Thanh, T.T.T. 2016. Primary structure, conformation in aqueous solution, and intestinal immunomodulating activity of fucoidan from two brown seaweed species Sargassum crassifolium and Padina australis. Carbohydrate Polymers 147: 69-78.

Zheng, L., Wen, G., Yuan, M. & Gao, F. 2016. Ultrasound-assisted extraction of total flavonoids from Corn silk and their antioxidant activity. Journal of Chemistry 2016 :1-5.

 

*Corresponding author; email: binalohitasari@unpak.ac.id

 

 

 

previous