Sains Malaysiana 50(6)(2021): 1521-1529

http://doi.org/10.17576/jsm-2021-5006-02

 

Deshelled Carica papaya Seeds as Natural Coagulant for Improvement Quality of River Water

(Biji Carica papaya Terkupas sebagai Bahan Penggumpal Semula Jadi untuk Meningkatkan Kualiti Air Sungai)

 

AMIR HARIZ AMRAN1, NUR SYAMIMI ZAIDI1*, KHALIDA MUDA1, MUHAMMAD BURHANUDDIN BAHRODIN1 & LIEW WAI LOAN2

 

1School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia

 

2UTM School of Professional and Continuing Education (UTMSPACE), 81310 Skudai, Johor Darul Takzim, Malaysia

 

Received: 27 August 2020/Accepted: 31 October 2020

 

ABSTRACT

This study evaluated the efficiency of deshelled papaya seeds as the natural coagulant in improving quality of river water. The deshelled papaya seeds biomass was mainly characterized for functional groups using FTIR, surface charge and protein content. Coagulation and flocculation tests were conducted using batch test for various dosages and pH values. The optimum dosage and pH were then tested in treating river of Class III to Class V. The functional groups in deshelled papaya seeds were O-H, C=O and C-O groups. The surface charge and protein content was +0.4 meq/g and 363 mg/g, respectively. The deshelled papaya seeds coagulant was able to remove turbidity up to 87.6 and 88.3% for river of Class III and Class IV, respectively, as well as 57.6 and 62.1% of total coliform and Escherichia coli, respectively, from Class III river at dosage 196 mg/L and pH 4. This study demonstrated that the deshelled Carica papaya seeds-derived coagulant is capable in treating common pollutants of river and simultaneously shows antibacterial properties.

 

Keywords: Antibacterial properties; Carica papaya seeds; deshelled; natural coagulant

 

ABSTRAK

Kajian ini menilai kecekapan biji betik terkupas sebagai bahan penggumpal semula jadi untuk meningkatkan kualiti air sungai. Biojisim biji betik terkupas ini kebanyakannya dicirikan untuk kumpulan berfungsi menggunakan FTIR, cas permukaan dan kandungan protein.  Ujian penggumpalan dan pemflokulatan telah dijalankan menggunakan ujian kelompok untuk beberapa variasi dos dan nilai pH. Dos dan pH yang optimum telah dikaji untuk merawat sungai kelas III hingga kelas IV. Kumpulan berfungsi biji betik terkupas adalah kumpulanO-H, C=O dan C-O. Cas permukaan dan kandungan protein masing-masing adalah+0.4 meq/g dan 363 mg/g. Penggumpal biji betik terkupas dapat menghilangkan kekeruhan sehingga 87.6 dan 88.3% untuk sungai kelas III dan kelas IV, berserta menghilangkan kandungan sebanyak 57.6 dan 62.1% daripada jumlah Koliform dan Escherichia coli, dariapada sungai kelas III pada dos 196 mg/L dan pH 4. Kajian ini menunjukkan bahawa bijiCarica papaya terkupas - terbitan penggumpal berkebolehan  dalam merawat pencemaran umum di sungai dan secara tidak langsung menunjukkan ciri antibakteria.

 

Kata kunci: BijiCarica papaya; ciri antibakteria; penggumpal semula jadi; terkupas

 

REFERENCES

Abidin, Z.Z., Ismail, N., Yunus, R., Ahamed, I.S. & Idris, A. 2011. A preliminary study on Jatropha curcas as coagulant in wastewater treatment. Environmental Technology 32(9): 971-977.

Alo, M.N., Anyim, C. & Elom, M. 2012. Coagulation and antimicrobial activities of Moringa oleifera seed storage at 3°C temperature in turbid Water. Advances in Applied Science Research 3(2): 887-894.

Amaglo, N.K., Bennett, R.N., Curto, R.B.L., Rosa, E.A.S., Turco, V.L., Giuffrida, A., Curto, A.L., Crea, F. & Timpo, G.M. 2010. Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chemistry 122(4): 1047-1054.

APHA. 2005. Standard Methods for the Examination of Water and Wastewater. 21st ed. Washington, D.C.: American Public Health Association.

Amran, A.H., Zaidi, N.S., Muda, K. & Loan, L.W. 2018. Effectiveness of natural coagulant in coagulation process: A review. International Journal of Engineering & Technology 7(3.9): 34-37.

Antov, M.G., Šćiban, M.B. & Petrović, N.J. 2010. Proteins from common bean (Phaseolus vulgaris) seed as a natural coagulant for potential application in water turbidity removal. Bioresource Technology 101(7): 2167-2172.

Camacho, F.P., Sousa, V.S., Bergamasco, R. & Teixeira, M.R. 2017. The use of Moringa oleifera as a natural coagulant in surface water treatment. Chemical Engineering Journal 313: 226-237.

Cheng, S.Y., Show, P.L., Juan, J.C., Ling, T.C., Lau, B.F., Lai, S.H. & Ng, E.P. 2020. Sustainable landfill leachate treatment: Optimize usage of guar gum as natural coagulant and floc characterization. Environmental Research 188: 109737.

Choy, S.Y., Prasad, K.M.N., Wu, T.Y., Raghunandan, M.E. & Ramanan, R.N. 2014. Utilization of plant-based natural coagulants as future alternatives towards sustainable water clarification. Journal of Environmental Sciences (China) 26(11): 2178-2189.

Chua, S.C., Malek, M.A., Chong, F.K., Sujarwo, W. & Ho, Y.C. 2019. Red lentil (Lens culinaris) extract as a novel natural coagulant for turbidity reduction: An evaluation, characterization and performance optimization study. Water 11(8): 1686.

Department of Agriculture (DOA). 2017. Fruit Crop Statistic Malaysia 2017. Putrajaya: Department of Agriculture.

Garza, N.G.G., Koyoc, J.A.C., Castillo, J.A.T., Zambrano, E.A.G., Ancona, D.B., Guerrero, L.C. & Garcia, S.R.S. 2017. Biofunctional properties of bioactive peptide fractions from protein isolates of Moringa seed (Moringa oleifera). Journal of Food Science Technology 54(13): 4268-4276.

Gottipati, R. & Mishra, S. 2010. Application of biowaste (waste generated in biodiesel plant) as an adsorbent for the removal of hazardous dye - methylene blue from aqueous phase. Brazilian Journal of Chemical Engineering 27(2): 357-367.

Gregory, J. & Barany, S. 2011. Adsorption and flocculation by polymers and polymer mixtures. Advances in Colloid and Interface Science 169(1): 1-12.

Hendrawati, Yuliastri, I.R., Nurhasni, Rohaeti, E., Effendi, H. & Darusman, L.K. 2016. The use of Moringa oleifera seed powder as coagulant to improve the quality of wastewater and ground water. IOP Conference Series: Earth and Environmental Science 31: 012033.

Ifesan, B.O.T., Fashakin, J.F., Ebosele, F. & Oyerinde, A.S. 2013. Antioxidant and antimicrobial properties of selected plant leaves. European Journal of Medicinal Plants 3(3): 465-473.

Kakoi, B., Kaluli, J.W., Ndiba, P. & Thiong’o, G. 2016. Banana pith as a natural coagulant for polluted river water. Ecological Engineering 95: 699-705.

Kara, F., Gurakan, G.C. & Sanin, F.D. 2008. Monovalent cations and their influence on activated sludge floc chemistry, structure, and physical characteristics. Biotechnology and Bioengineering 100(2): 231-239.

Kukić, D.V., Šćiban, M.B., Prodanović, J.M., Tepić, A.N. & Vasić, M.A. 2015. Extracts of fava bean (Vicia faba L.) seeds as natural coagulants. Ecological Engineering 84: 229-232.

Kumar, P.S., Centhil, V.M., Kameshwari, R., Palaniyappan, M., Kalaivani, V.D. & Pavithra, K.G. 2014. Experimental study on parameter estimation and mechanism for the removal of turbidity from groundwater and synthetic water using Moringa oleifera seed powder. Desalination and Water Treatment 57: 5488-5497.

Kumar, R. & Ahmad, R. 2011. Biosorption of hazardous crystal violet dye from aqueous solution onto Treated Ginger Waste (TGW). Desalination 265: 112-118.

Kristianto, H., Kurniawan, M.A. & Soetedjo, J.N.M. 2018a. Utilization of papaya seeds as natural coagulant for synthetic textile coloring agent wastewater treatment. International Journal on Advanced Science, Engineering and Information Technology 8(5): 2071-2077.

Kristianto, H., Paulina, S. & Soetedjo, J.N.M. 2018b. Exploration of various Indonesian indigenous plants as natural coagulants for synthetic turbid water. International Journal of Technology 3: 466-471.

Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193: 265-275.

Maurya, S. & Daverey, A. 2018. Evaluation of plant-based natural coagulants for municipal wastewater treatment. 3 Biotech 8(1): 1-4.

Miller, S.M., Fugate, E.J., Craver, V.O., Smith, J.A. & Zimmerman, J.B. 2008. Toward understanding the efficacy and mechanism of Opuntia spp. as a natural coagulant for potential application in water treatment. Environment Science Technology 42: 4274-4279.

Morgan, J.W., Forster, C.F. & Evison, L. 1990. A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges. Water Research 24(6): 743-750.

Okaiyeto, K., Nwodo, U.U., Okoli, S.A., Mabinya, L.V. & Okoh, A.I. 2016. Implications for public health demand alternatives to inorganic and synthetic flocculants: Bioflocculants as important candidates. Microbiology Open 5(2): 177-211.

Peter, J.K., Kumar, Y., Pandey, P. & Masih, H. 2014. Antibacterial activity of seed and leaf extract of Carica papaya var. Pusa dwarf Linn. Journal of Pharmacy and Biological Sciences 9(2): 29-37.

Sagar, N.A., Pareek, S., Sharma, S., Yahia, E.M. & Lobo, M.G. 2018. Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Comprehensive Reviews in Food Science and Food Safety 17(3): 512-531.

Teh, C.Y., Wu, T.Y. & Juan, J.C. 2014. Optimization of agro-industrial wastewater treatment using unmodified rice starch as a natural coagulant. Industrial Crops and Products 56: 17-26.

Unnisa, S.A. & Bi, S.Z. 2018. Carica papaya seeds effectiveness as coagulant and solar disinfection in removal of turbidity and coliforms. Applied Water Science 8(6): 1-8.

Yin, C.Y. 2010. Emerging usage of plant-based coagulants for water and wastewater treatment. Process Biochemistry 45(9): 1437-1444.

Yongabi, K.A., Lewis, D.M. & Harris, P.L. 2011. Indigenous plant-based coagulants/disinfectants and sand filter media for surface water treatment in Bamenda, Cameroon. African Journal of Biotechnology 10(43): 8625-8629.

Zaidi, N.S., Muda, K., Abdul Rahman, M.A., Sgawi, M.S. & Amran, A.H. 2019. Effectiveness of local waste materials as organic-based coagulant in treating water. IOP Conference Series: Materials Science and Engineering 636: 012007. 

 

*Corresponding author; email: nursyamimi@utm.my

 

     

 

 

previous