Sains Malaysiana 50(9)(2021): 2523-2535

http://doi.org/10.17576/jsm-2021-5009-03

 

Synthesis and Characterization of Carboxymethyl Cellulose Derived from Empty Fruit Bunch

(Sintesis dan Pencirian Karboksimetil Selulosa daripada Tandan Kosong Kelapa Sawit)

 

NURUL SUHADA AB RASID1, MUZAKKIR MOHAMMAD ZAINOL1,2 & NOR AISHAH SAIDINA AMIN1*

 

1Chemical Reaction Engineering Group (CREG), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300 UTM Johor Bahru, Johor Darul Takzim, Malaysia

 

2School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

 

Received: 13 April 2020/Accepted: 27 January 2021

 

 

ABSTRACT

Oil palm empty fruit bunch (EFB), a cellulose rich lignocellulosic biomass has huge potential to be utilised as a raw material for the synthesis of carboxymethyl cellulose (CMC). In this study, CMC was synthesised from EFB extracted cellulose at the optimum carboxymethylation reaction conditions. The extracted cellulose yield obtained by alkaline treatment followed by bleaching with hydrogen peroxide was 45.5 wt.%. The cellulose structure was elucidated using thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) patterns. Meanwhile, the synthesised CMC was characterised with FT-IR, XRD and scanning electron microscopy (SEM). The maximum degree of substitution (DS) obtained was 1.30 with the yield of 177.51 wt.% and purity 89% determined using chemical methods at the optimum conditions of 30 wt.% of NaOH, 18 g of SMCA, 65 °C, 3 h reaction time and less than 75 μm of EFB-cellulose particle size. XRD analysis inferred low crystallinity while FTIR spectra verified the CMC structure and presence of different functional groups. The results for DS and EFB CMC yield obtained from this work were considerably higher than those reported in the literature. The synthesised EFB CMC can be further utilised in various industries such as detergent, mining, flotation, and oil and gas drilling muds applications.

Keywords: Carboxymethyl cellulose; cellulose; empty fruit bunch; oil palm; pre-treatment

 

ABSTRAK

Tandan kosong kelapa sawit (EFB) iaitu biojisim lignoselulosa yang kaya dengan selulosa mempunyai potensi besar untuk digunakan sebagai bahan mentah bagi sintesis karboksimetil selulosa (CMC). Dalam kajian ini, CMC telah disintesis daripada selulosa EFB yang telah diekstrak pada keadaan tindak balas karboksimetilasi yang optimum. Hasil selulosa yang diekstrak menggunakan rawatan alkali diikuti oleh pelunturan dengan hidrogen peroksida adalah 45.5% bt. Struktur selulosa telah diperoleh menggunakan analisis termogravimetrik (TGA), spektroskopi transformasi Fourier inframerah (FT-IR) dan corak difraksi sinar-X (XRD). Sementara itu, CMC yang disintesis telah dicirikan menggunakan FTIR, XRD dan mikroskop elektron imbasan (SEM). Tahap penggantian maksimum (DS) yang diperoleh adalah 1.30 dengan hasil sebanyak 177.51% bt. dan ketulenan 89% ditentukan menggunakan kaedah kimia pada keadaan optimum iaitu 30% bt. NaOH, 18 g SMCA, pada 65 °C, tindak balas selama 3 jam dan saiz zarah selulosa-EFB kurang daripada 75 μm. Analisis XRD menunjukkan pengkristalan yang rendah manakala spektrum FTIR mengesahkan struktur CMC dan kehadiran kumpulan berfungsi yang berbeza. Keputusan untuk hasil DS dan EFB CMC yang diperoleh daripada kajian ini jauh lebih tinggi daripada yang pernah dilaporkan. EFB CMC yang disintesis boleh digunakan seterusnya dalam pelbagai industri seperti detergen, perlombongan, pengapungan, serta penggerudian minyak dan gas.

Kata kunci: Karboksimetil selulosa; kelapa sawit; pra-rawatan; selulosa; tandan kosong kelapa sawit

 

REFERENCES

Abd Wafti, N.S., Lau, H.L.N., Loh, S.K., Aziz, A.A., Ab Rahman, Z. & May, C.Y. 2017. Activated carbon from oil palm biomass as potential adsorbent for palm oil mill effluent treatment. Journal of Oil Palm Research 29(2): 278-290.

Adinugraha, M.P., Marseno, D.W. & Haryadi. 2005. Synthesis and characterization of sodium carboxymethylcellulose from cavendish banana pseudo stem (Musa cavendishiiLAMBERT). Carbohydrate Polymers 62(2): 164-169.

Barai, B.K., Singhal, R.S. & Kulkarni, P.R. 1997. Optimization of a process for preparing carboxymethyl cellulose from water hyacinth (Eichornia crassipes). Carbohydrate Polymers 32(3): 229-231.

Bono, A., Ying, P.H., Yan, F.Y., Muei, C.L., Sarbatly, R. & Krishnaiah, D. 2009. Synthesis and characterization of carboxymethyl cellulose from palm kernel cake. Advances in Natural & Applied Sciences 3(1): 5-11.

Candido, R.G. & Gonçalves, A.R. 2019. Evaluation of two different applications for cellulose isolated from sugarcane bagasse in a biorefinery concept. Industrial Crops and Products 142: 111616.

Crabbe-Mann, M., Tsaoulidis, D., Parhizkar, M. & Edirisinghe, M. 2018. Ethyl cellulose, cellulose acetate and carboxymethyl cellulose microstructures prepared using electrohydrodynamics and green solvents. Cellulose 25(3): 1687-1703.

Fang, J.M., Fowler, P.A., Tomkinson, J. & Hill, C.A.S. 2002. The preparation and characterisation of a series of chemically modified potato starches. Carbohydrate Polymers 47(3): 245-252.

Golbaghi, L., Khamforoush, M. & Hatami, T. 2017. Carboxymethyl cellulose production from sugarcane bagasse with steam explosion pulping: Experimental, modeling, and optimization. Carbohydrate Polymers 174: 780-788.

Gralén, N. 1955. Cellulose and cellulose derivatives (High polymers, Volume V, 2nd ed. In 3 parts). edited by Ott, E., Spurlin, H. & Grafflin, M.W. New York-London: Interscience. Journal of Polymer Science 18(89): 443-444.

Haleem, N., Arshad, M., Shahid, M. & Tahir, M.A. 2014. Synthesis of carboxymethyl cellulose from waste of cotton ginning industry. Carbohydrate Polymers 113: 249-255.

Halib, N., Mohd Amin, M.C.I., Ahmad, I., Mohamed Hashim, Z. & Jamal, N. 2009. Pengembungan hidrogel selulosa bakteria-asid akrilik: sensitiviti terhadap rangsangan luar. Sains Malaysiana38(5): 785-791.

He, X., Wu, S., Fu, D. & Ni, J. 2009. Preparation of sodium carboxymethyl cellulose from paper sludge. Journal of Chemical Technology and Biotechnology 84(3): 427-434.

Hebeish, A., Abou-Zeid, N., Waly, A. & Higazy, A. 1988. Chemical modification of flax-cellulose via etherification, esterification and crosslinking reactions. Cellulose Chemistry and Technology 22(6): 591-605.

Huang, C., Chia, P., Lim, C., Nai, J., Ding, D.Y., Seow, P. & Chan, E. 2017. Synthesis and characterisation of carboxymethyl cellulose from various agricultural wastes. Cellulose Chemistry and Technology 51(7-8): 665-672.

Jia, F., Liu, H.J. & Zhang, G.G. 2016. Preparation of carboxymethyl cellulose from corncob. Procedia Environmental Sciences 31: 98-102.

Joshi, G., Naithani, S., Varshney, V.K., Bisht, S.S., Rana, V. & Gupta, P.K. 2015. Synthesis and characterization of carboxymethyl cellulose from office waste paper: A greener approach towards waste management. Waste Management 38: 33-40.

Leal, G.F., Ramos, L.A., Barrett, D.H., Curvelo, A.A.S. & Rodella, C.B. 2015. A thermogravimetric analysis (TGA) method to determine the catalytic conversion of cellulose from carbon-supported hydrogenolysis process. Thermochimica Acta 616: 9-13.

Li, H., Zhang, H., Xiong, L., Chen, X., Wang, C., Huang, C. & Chen, X. 2019. Isolation of cellulose from wheat straw and its utilization for the preparation of carboxymethyl cellulose. Fibers and Polymers 20(5): 975-981.

Liew, R.K., Nam, W.L., Chong, M.Y., Phang, X.Y., Su, M.H., Yek, P.N.Y., Ma, N.L., Cheng, C.K., Chong, C.T. & Lam, S.S. 2018. Oil palm waste: An abundant and promising feedstock for microwave pyrolysis conversion into good quality biochar with potential multi-applications. Process Safety and Environmental Protection 115: 57-69.

Liu, C.F., Xu, F., Sun, J.X., Ren, J.L., Curling, S., Sun, R.C., Fowler, P. & Baird, M.S. 2006. Physicochemical characterization of cellulose from perennial ryegrass leaves (Lolium perenne). Carbohydrate Research 341(16): 2677-2687.

Megha, R., Ravikiran, Y.T., Kotresh, S., Vijaya Kumari, S.C., Raj Prakash, H.G. & Thomas, S. 2018. Carboxymethyl cellulose: An efficient material in enhancing alternating current conductivity of HCl doped polyaniline. Cellulose 25(2): 1147-1158.

Mondal, M.I.H., Yeasmin, M.S. & Rahman, M.S. 2015. Preparation of food grade carboxymethyl cellulose from corn husk agrowaste. International Journal of Biological Macromolecules 79: 144-150.

Mousavi, S.M.S., Dehghanzadeh, R. & Ebrahimi, S.M. 2017. Comparative analysis of ozonation (O3) and activated carbon catalyzed ozonation (ACCO) for destroying chlorophyll α and reducing dissolved organic carbon from a eutrophic water reservoir. Chemical Engineering Journal 314: 396-405.

Moussa, I., Khiari, R., Moussa, A., Belgacem, M.N. & Mhenni, M.F. 2019. Preparation and characterization of carboxymethyl cellulose with a high degree of substitution from agricultural wastes. Fibers and Polymers 20(5): 933-943.

Malaysian Palm Oil Council. 2015. The Oil Palm Tree. Malaysian Palm Oil Council (MPOC). http://www.mpoc.org.my/The_Oil_Palm_Tree.aspx. Accessed 17 August 2020.

Naceur Abouloula, C., Rizwan, M., Selvanathan, V., Abdullah, C.I., Hassan, A., Yahya, R. & Oueriagli, A. 2018. A novel application for oil palm empty fruit bunch: Extraction and modification of cellulose for solid polymer electrolyte. Ionics 24(12): 3827-3836.

Palamae, S., Dechatiwongse, P., Choorit, W., Chisti, Y. & Prasertsan, P. 2017. Cellulose and hemicellulose recovery from oil palm empty fruit bunch (EFB) fibers and production of sugars from the fibers. Carbohydrate Polymers 155: 491-497.

Parid, D.M., Abd Rahman, N.A., Baharuddin, A.S., Mohammed, M.A.P., Johari, A.M. & Razak, S.Z.A. 2018. Synthesis and characterization of carboxymethyl cellulose from oil palm empty fruit bunch stalk fibres. BioResources 13(1): 535-554.

Panwar, N.L., Kothari, R. & Tyagi, V.V. 2012. Thermo chemical conversion of biomass - Eco friendly energy routes. Renewable and Sustainable Energy Reviews 16(4): 1801-1816.

Pushpamalar, V., Langford, S.J., Ahmad, M. & Lim, Y.Y. 2006. Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohydrate Polymers 64(2): 312-318.

Rachtanapun, P., Eitssayeam, S. & Pengpat, K. 2010. Study of carboxymethyl cellulose from papaya peels as binder in ceramics. Advanced Materials Research 93-94: 17-21.

Rachtanapun, P., Luangkamin, S., Tanprasert, K. & Suriyatem, R. 2012. Carboxymethyl cellulose film from durian rind. LWT - Food Science and Technology 48(1): 52-58.

Rachtanapun, P. & Rattanapanone, N. 2011. Synthesis and characterization of carboxymethyl cellulose powder and films from Mimosa pigra. Journal of Applied Polymer Science 122(5): 3218-3226.

Sheikh, J., Bramhecha, I. & Teli, M.D. 2015. Recycling of terry towel (cellulosic) waste into carboxymethyl cellulose (CMC) for textile printing. Fibers and Polymers 16(5): 1113-1118.

Shui, T., Feng, S., Chen, G., Li, A., Yuan, Z., Shui, H., Kuboki, T. & Xu, C. 2017. Synthesis of sodium carboxymethyl cellulose using bleached crude cellulose fractionated from cornstalk. Biomass and Bioenergy 105: 51-58.

Soom, R.M., Ab Gapor, M.T. & Hassan, W.H.W. 2004. Production of Carboxymethyl Cellulose (CMC) from oil palm Empty Fruit Bunch (EFB). MPOB TT 228: 235.

Sophonputtanaphoca, S., Chutong, S. & Nooeaid, K. 2019. Potential of Thai rice straw as a raw material for the synthesis of carboxymethyl cellulose. International Food Research Journal 26: 969-978.

Tasaso, P. 2015. Optimization of reaction conditions for synthesis of carboxymethyl cellulose from oil palm fronds. International Journal of Chemical Engineering and Applications 6(2): 101-104.

Tijsen, C.J., Kolk, H.J., Stamhuis, E.J. & Beenackers, A.A.C.M. 2001. An experimental study on the carboxymethylation of granular potato starch in non-aqueous media. Carbohydrate Polymers 45(3): 219-226.

Tongdeesoontorn, W., Mauer, L.J., Wongruong, S., Sriburi, P. & Rachtanapun, P. 2011. Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chemistry Central Journal 5: 6.

Togrul, H. & Arslan, N. 2003. Production of carboxymethyl cellulose from sugar beet pulp cellulose and rheological behaviour of carboxymethyl cellulose. Carbohydrate Polymer 54(1): 73-82.

Varshney, V.K., Gupta, P.K., Naithani, S., Khullar, R., Bhatt, A. & Soni, P.L. 2006. Carboxymethylation of α-cellulose isolated from Lantana camara with respect to degree of substitution and rheological behavior. Carbohydrate Polymers 63(1): 40-45.

Yáñez, M., Matsuhiro, B., Maldonado, S., González, R., Luengo, J., Uyarte, O., Serafine, D., Moya, S., Romero, J., Torres, R. & Kogan, M.J. 2018. Carboxymethylcellulose from bleached organosolv fibers of Eucalyptus nitens: Synthesis and physicochemical characterization. Cellulose 25(5): 2901-2914.

Yeasmin, M.S. & Mondal, M.I.H. 2015. Synthesis of highly substituted carboxymethyl cellulose depending on cellulose particle size. International Journal of Biological Macromolecules 80: 725-731.

Youssef, M., Nada, A. & Ibrahem, A. 1989. Effect of thermal-treatment on the reactivity of cellulose toward carboxymethylation. Cellulose Chemistry and Technology 23(5): 505-511.

Zafar, S. 2019. Biomass Wastes from Palm Oil Mills. BioEnergy Consult. https://www.bioenergyconsult.com/tag/mesocarpfibers/#:~:text=Compared%20to%20other%20residues%20from,solid%20fuels%20for%20steam%20boilers.

Zhang, J. & Wu, D. 1992. Characteristics of the aqueous solution of carboxymethyl starch ether. Journal of Applied Polymer Science 46(2): 369-374.

 

*Corresponding author; email: noraishah@cheme.utm.my

   

 

previous