Sains Malaysiana 50(9)(2021): 2523-2535
http://doi.org/10.17576/jsm-2021-5009-03
Synthesis and
Characterization of Carboxymethyl Cellulose Derived from Empty Fruit Bunch
(Sintesis dan Pencirian Karboksimetil Selulosa daripada Tandan Kosong Kelapa Sawit)
NURUL SUHADA AB RASID1, MUZAKKIR MOHAMMAD ZAINOL1,2 & NOR AISHAH SAIDINA AMIN1*
1Chemical Reaction Engineering Group (CREG), School
of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300 UTM Johor
Bahru, Johor Darul Takzim, Malaysia
2School of Chemical Engineering,
College of Engineering,
Universiti Teknologi MARA,
40450 Shah Alam, Selangor Darul Ehsan,
Malaysia
Received: 13 April 2020/Accepted: 27 January 2021
ABSTRACT
Oil palm empty fruit bunch (EFB),
a cellulose rich lignocellulosic biomass has huge potential to be utilised as a
raw material for the synthesis of carboxymethyl cellulose (CMC).
In this study, CMC was synthesised from EFB extracted
cellulose at the optimum carboxymethylation reaction conditions. The extracted
cellulose yield obtained by alkaline treatment followed by bleaching with
hydrogen peroxide was 45.5 wt.%. The cellulose structure was elucidated using
thermogravimetric analysis (TGA), Fourier-transform infrared
spectroscopy (FT-IR) and X-ray diffraction (XRD) patterns.
Meanwhile, the synthesised CMC was characterised with FT-IR,
XRD and scanning electron microscopy (SEM).
The maximum degree of substitution (DS) obtained was 1.30 with the
yield of 177.51 wt.% and purity 89% determined using chemical methods at the
optimum conditions of 30 wt.% of NaOH,
18 g of SMCA, 65 °C, 3 h reaction time and less than 75 μm of EFB-cellulose particle size. XRD analysis
inferred low crystallinity while FTIR spectra verified the CMC structure
and presence of different functional groups. The results for DS and EFB
CMC yield obtained from this work were considerably higher than
those reported in the literature. The synthesised EFB CMC can
be further utilised in various industries such as detergent, mining, flotation,
and oil and gas drilling muds applications.
Keywords: Carboxymethyl cellulose;
cellulose; empty fruit bunch; oil palm; pre-treatment
ABSTRAK
Tandan kosong kelapa sawit (EFB) iaitu biojisim lignoselulosa yang kaya dengan selulosa mempunyai potensi besar untuk digunakan sebagai bahan mentah bagi sintesis karboksimetil selulosa (CMC). Dalam kajian ini, CMC telah disintesis daripada selulosa EFB yang telah diekstrak pada keadaan tindak balas karboksimetilasi yang
optimum. Hasil selulosa yang diekstrak menggunakan rawatan alkali diikuti oleh pelunturan dengan hidrogen peroksida adalah 45.5% bt. Struktur selulosa telah diperoleh menggunakan analisis termogravimetrik (TGA), spektroskopi transformasi Fourier inframerah (FT-IR) dan corak difraksi sinar-X (XRD). Sementara itu, CMC yang disintesis telah dicirikan menggunakan FTIR, XRD dan mikroskop elektron imbasan (SEM). Tahap penggantian maksimum (DS) yang diperoleh adalah 1.30 dengan hasil sebanyak 177.51% bt. dan ketulenan 89% ditentukan menggunakan kaedah kimia pada keadaan optimum iaitu 30% bt. NaOH,
18 g SMCA, pada 65 °C, tindak balas selama 3 jam dan saiz zarah selulosa-EFB kurang daripada 75 μm. Analisis XRD menunjukkan pengkristalan yang rendah manakala spektrum FTIR mengesahkan struktur CMC dan kehadiran kumpulan berfungsi yang berbeza. Keputusan untuk hasil DS dan EFB CMC yang diperoleh daripada kajian ini jauh lebih tinggi daripada yang pernah dilaporkan. EFB CMC yang disintesis boleh digunakan seterusnya dalam pelbagai industri seperti detergen, perlombongan, pengapungan, serta penggerudian minyak dan gas.
Kata kunci: Karboksimetil selulosa; kelapa sawit; pra-rawatan; selulosa; tandan kosong kelapa sawit
REFERENCES
Abd Wafti, N.S., Lau, H.L.N., Loh,
S.K., Aziz, A.A., Ab Rahman, Z. & May, C.Y. 2017. Activated carbon from oil
palm biomass as potential adsorbent for palm oil mill effluent treatment. Journal
of Oil Palm Research 29(2): 278-290.
Adinugraha,
M.P., Marseno, D.W. & Haryadi.
2005. Synthesis and characterization of sodium carboxymethylcellulose from
cavendish banana pseudo stem (Musa cavendishiiLAMBERT). Carbohydrate Polymers 62(2): 164-169.
Barai,
B.K., Singhal, R.S. & Kulkarni, P.R. 1997. Optimization of a process for
preparing carboxymethyl cellulose from water hyacinth (Eichornia crassipes). Carbohydrate Polymers 32(3):
229-231.
Bono, A., Ying,
P.H., Yan, F.Y., Muei, C.L., Sarbatly,
R. & Krishnaiah, D. 2009. Synthesis and characterization of carboxymethyl
cellulose from palm kernel cake. Advances in Natural & Applied Sciences 3(1):
5-11.
Candido, R.G. & Gonçalves, A.R. 2019. Evaluation of two
different applications for cellulose isolated from sugarcane bagasse in a
biorefinery concept. Industrial Crops and Products 142: 111616.
Crabbe-Mann, M., Tsaoulidis, D., Parhizkar,
M. & Edirisinghe, M. 2018. Ethyl cellulose,
cellulose acetate and carboxymethyl cellulose microstructures prepared using electrohydrodynamics and green solvents. Cellulose 25(3):
1687-1703.
Fang, J.M.,
Fowler, P.A., Tomkinson, J. & Hill, C.A.S. 2002. The preparation and
characterisation of a series of chemically modified potato starches. Carbohydrate
Polymers 47(3): 245-252.
Golbaghi,
L., Khamforoush, M. & Hatami,
T. 2017. Carboxymethyl cellulose production from sugarcane bagasse with steam
explosion pulping: Experimental, modeling, and
optimization. Carbohydrate Polymers 174: 780-788.
Gralén,
N. 1955. Cellulose and cellulose derivatives (High polymers, Volume V, 2nd ed.
In 3 parts). edited by Ott, E., Spurlin, H. & Grafflin, M.W. New York-London: Interscience. Journal of Polymer Science 18(89): 443-444.
Haleem, N.,
Arshad, M., Shahid, M. & Tahir, M.A. 2014. Synthesis of carboxymethyl
cellulose from waste of cotton ginning industry. Carbohydrate Polymers 113:
249-255.
Halib,
N., Mohd Amin, M.C.I., Ahmad, I., Mohamed Hashim, Z.
& Jamal, N. 2009. Pengembungan hidrogel selulosa bakteria-asid akrilik: sensitiviti terhadap rangsangan luar. Sains Malaysiana38(5):
785-791.
He, X., Wu, S.,
Fu, D. & Ni, J. 2009. Preparation of sodium carboxymethyl cellulose from
paper sludge. Journal of Chemical Technology and Biotechnology 84(3):
427-434.
Hebeish,
A., Abou-Zeid, N., Waly, A.
& Higazy, A. 1988. Chemical modification of
flax-cellulose via etherification, esterification and crosslinking reactions. Cellulose
Chemistry and Technology 22(6): 591-605.
Huang, C., Chia,
P., Lim, C., Nai, J., Ding, D.Y., Seow,
P. & Chan, E. 2017. Synthesis and characterisation of carboxymethyl
cellulose from various agricultural wastes. Cellulose Chemistry and
Technology 51(7-8): 665-672.
Jia, F., Liu,
H.J. & Zhang, G.G. 2016. Preparation of carboxymethyl cellulose from
corncob. Procedia Environmental Sciences 31: 98-102.
Joshi, G.,
Naithani, S., Varshney, V.K., Bisht, S.S., Rana, V. & Gupta, P.K. 2015. Synthesis
and characterization of carboxymethyl cellulose from office waste paper: A
greener approach towards waste management. Waste Management 38: 33-40.
Leal, G.F.,
Ramos, L.A., Barrett, D.H., Curvelo, A.A.S. &
Rodella, C.B. 2015. A thermogravimetric analysis (TGA) method to determine the
catalytic conversion of cellulose from carbon-supported hydrogenolysis process. Thermochimica Acta 616: 9-13.
Li, H., Zhang, H., Xiong, L., Chen, X.,
Wang, C., Huang, C. & Chen, X. 2019. Isolation of cellulose from wheat
straw and its utilization for the preparation of carboxymethyl cellulose. Fibers and Polymers 20(5): 975-981.
Liew, R.K., Nam,
W.L., Chong, M.Y., Phang, X.Y., Su,
M.H., Yek, P.N.Y., Ma, N.L., Cheng, C.K., Chong, C.T.
& Lam, S.S. 2018. Oil palm waste: An abundant and promising feedstock for
microwave pyrolysis conversion into good quality biochar with potential
multi-applications. Process Safety and Environmental Protection 115:
57-69.
Liu, C.F., Xu,
F., Sun, J.X., Ren, J.L., Curling, S., Sun, R.C., Fowler, P. & Baird, M.S.
2006. Physicochemical characterization of cellulose from perennial ryegrass
leaves (Lolium perenne). Carbohydrate Research 341(16): 2677-2687.
Megha,
R., Ravikiran, Y.T., Kotresh,
S., Vijaya Kumari, S.C., Raj Prakash, H.G. & Thomas, S. 2018. Carboxymethyl
cellulose: An efficient material in enhancing alternating current conductivity
of HCl doped polyaniline. Cellulose 25(2): 1147-1158.
Mondal, M.I.H., Yeasmin, M.S. & Rahman, M.S. 2015. Preparation of food
grade carboxymethyl cellulose from corn husk agrowaste. International Journal of Biological Macromolecules 79: 144-150.
Mousavi, S.M.S., Dehghanzadeh, R. & Ebrahimi, S.M. 2017.
Comparative analysis of ozonation (O3) and activated carbon catalyzed ozonation (ACCO) for destroying chlorophyll α and reducing dissolved
organic carbon from a eutrophic water reservoir. Chemical Engineering
Journal 314: 396-405.
Moussa, I., Khiari, R., Moussa, A., Belgacem,
M.N. & Mhenni, M.F. 2019. Preparation and
characterization of carboxymethyl cellulose with a high degree of substitution
from agricultural wastes. Fibers and
Polymers 20(5): 933-943.
Malaysian Palm
Oil Council. 2015. The Oil Palm Tree. Malaysian Palm Oil Council (MPOC).
http://www.mpoc.org.my/The_Oil_Palm_Tree.aspx. Accessed 17 August 2020.
Naceur Abouloula, C., Rizwan, M., Selvanathan,
V., Abdullah, C.I., Hassan, A., Yahya, R. & Oueriagli,
A. 2018. A novel application for oil palm empty fruit bunch: Extraction and
modification of cellulose for solid polymer electrolyte. Ionics 24(12):
3827-3836.
Palamae,
S., Dechatiwongse, P., Choorit,
W., Chisti, Y. & Prasertsan,
P. 2017. Cellulose and hemicellulose recovery from oil palm empty fruit bunch
(EFB) fibers and production of sugars from the fibers. Carbohydrate Polymers 155: 491-497.
Parid,
D.M., Abd Rahman, N.A., Baharuddin, A.S., Mohammed,
M.A.P., Johari, A.M. & Razak, S.Z.A. 2018. Synthesis and characterization
of carboxymethyl cellulose from oil palm empty fruit bunch stalk fibres. BioResources 13(1): 535-554.
Panwar, N.L.,
Kothari, R. & Tyagi, V.V. 2012. Thermo chemical conversion of biomass - Eco
friendly energy routes. Renewable and Sustainable Energy Reviews 16(4):
1801-1816.
Pushpamalar,
V., Langford, S.J., Ahmad, M. & Lim, Y.Y. 2006. Optimization of reaction
conditions for preparing carboxymethyl cellulose from sago waste. Carbohydrate
Polymers 64(2): 312-318.
Rachtanapun,
P., Eitssayeam, S. & Pengpat,
K. 2010. Study of carboxymethyl cellulose from papaya peels as binder in
ceramics. Advanced Materials Research 93-94: 17-21.
Rachtanapun,
P., Luangkamin, S., Tanprasert,
K. & Suriyatem, R. 2012. Carboxymethyl cellulose
film from durian rind. LWT - Food Science and Technology 48(1): 52-58.
Rachtanapun,
P. & Rattanapanone, N. 2011. Synthesis and
characterization of carboxymethyl cellulose powder and films from Mimosa pigra. Journal of Applied Polymer Science 122(5):
3218-3226.
Sheikh, J., Bramhecha, I. & Teli, M.D.
2015. Recycling of terry towel (cellulosic) waste into carboxymethyl cellulose
(CMC) for textile printing. Fibers and
Polymers 16(5): 1113-1118.
Shui, T., Feng,
S., Chen, G., Li, A., Yuan, Z., Shui, H., Kuboki, T.
& Xu, C. 2017. Synthesis of sodium carboxymethyl cellulose using bleached
crude cellulose fractionated from cornstalk. Biomass and Bioenergy 105:
51-58.
Soom,
R.M., Ab Gapor, M.T. & Hassan, W.H.W. 2004.
Production of Carboxymethyl Cellulose (CMC) from oil palm Empty Fruit Bunch
(EFB). MPOB TT 228: 235.
Sophonputtanaphoca, S., Chutong, S. & Nooeaid, K. 2019. Potential of Thai rice straw as a raw
material for the synthesis of carboxymethyl cellulose. International Food
Research Journal 26: 969-978.
Tasaso,
P. 2015. Optimization of reaction conditions for synthesis of carboxymethyl
cellulose from oil palm fronds. International Journal of Chemical
Engineering and Applications 6(2): 101-104.
Tijsen,
C.J., Kolk, H.J., Stamhuis, E.J. & Beenackers, A.A.C.M. 2001. An experimental study on the
carboxymethylation of granular potato starch in non-aqueous media. Carbohydrate
Polymers 45(3): 219-226.
Tongdeesoontorn, W., Mauer, L.J., Wongruong, S., Sriburi, P. & Rachtanapun, P.
2011. Effect of carboxymethyl cellulose concentration on physical properties of
biodegradable cassava starch-based films. Chemistry Central Journal 5:
6.
Togrul,
H. & Arslan, N. 2003. Production of carboxymethyl cellulose from sugar beet
pulp cellulose and rheological behaviour of carboxymethyl cellulose. Carbohydrate
Polymer 54(1): 73-82.
Varshney, V.K.,
Gupta, P.K., Naithani, S., Khullar, R., Bhatt, A. & Soni,
P.L. 2006. Carboxymethylation of α-cellulose isolated from Lantana camara with respect to degree of substitution and
rheological behavior. Carbohydrate Polymers 63(1):
40-45.
Yáñez, M., Matsuhiro, B., Maldonado, S.,
González, R., Luengo, J., Uyarte,
O., Serafine, D., Moya, S., Romero, J., Torres, R.
& Kogan, M.J. 2018. Carboxymethylcellulose from bleached organosolv fibers of Eucalyptus nitens: Synthesis and physicochemical
characterization. Cellulose 25(5): 2901-2914.
Yeasmin,
M.S. & Mondal, M.I.H. 2015. Synthesis of highly substituted carboxymethyl
cellulose depending on cellulose particle size. International Journal of
Biological Macromolecules 80: 725-731.
Youssef, M.,
Nada, A. & Ibrahem, A. 1989. Effect of
thermal-treatment on the reactivity of cellulose toward carboxymethylation. Cellulose
Chemistry and Technology 23(5): 505-511.
Zafar, S. 2019. Biomass Wastes from Palm Oil Mills. BioEnergy Consult. https://www.bioenergyconsult.com/tag/mesocarpfibers/#:~:text=Compared%20to%20other%20residues%20from,solid%20fuels%20for%20steam%20boilers.
Zhang, J. &
Wu, D. 1992. Characteristics of the aqueous solution of carboxymethyl starch
ether. Journal of Applied Polymer Science 46(2): 369-374.
*Corresponding
author; email: noraishah@cheme.utm.my
|