Sains Malaysiana 50(9)(2021): 2687-2700
http://doi.org/10.17576/jsm-2021-5009-16
Cardiac
Depressant and Vasodialatory Effect of Flaxseed - Basis for the Medicinal Use
in Hypertension
(Tekanan Jantung dan
Kesan Kevasokembangan Biji Rami - Asas untuk Penggunaan Ubatan dalam Tekanan
Darah Tinggi)
AMBER HANIF PALLA1,3, NAJEEB UR REHMAN*2, HASAN SALMAN SIDDIQI3, ANWAR-UL-HASSAN GILANI4, BINA SHAHEEN SIDDIQUI5, MAIMOONA ILYAS5 & SOBIYA PERWAIZ5,6
1Faculty of Pharmacy, Department of Basic Medical Sciences, Salim Habib University (formerly Barrett Hodgson University), Karachi,
Pakistan
2Department of Pharmacology and Toxicology, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
3Department of Biological and Biomedical Sciences, The Aga Khan
University Hospital and Medical College, Karachi, Pakistan
4The University of Haripur, Haripur, Khyber
Pakhtunkhwa, Pakistan
5H.E.J. Research Institute of Chemistry, International Centre for
Chemical and Biological Sciences, University of Karachi, Karachi, Sindh 75270, Pakistan
6Federal Urdu University, Karachi
Received: 4 October 2020/Accepted: 26 January 2021
ABSTRACT
Linum usitatissimum (Flaxseed) is known
to be traditionally used for managing hypertension. In this study, we aim to
provide a mechanistic basis for the medicinal use of Flaxseed in hypertension.
The high-performance liquid chromatography (HPLC) analysis
that we carried out during our study showed the presence of polar compounds
(quercetin, nicotinic acid, and nicotinamide) in Flaxseed’s crude extract
(Fs.Cr; aqueous methanolic). In anesthetized rats, Fs.Cr reduced arterial blood
pressure (BP) dose-dependently (10-100 mg/kg). When tested for its
mechanism of action ex vivo, Fs.Cr inhibited both the force and rate of
spontaneous contractions in the dose range of 1-10 mg/mL in isolated guinea-pig
atria, similar to how verapamil, a standard Ca+2 channel
blocker does it. Further, Fs.Cr showed vasodilator effect against the
contractions induced by phenylephrine (PE, 1 μM) in rat
aortic ring preparations (concentration range: 1-10 mg/mL), whereas no effect
was observed against the contractions induced by low K+ (25
mM) as well as high K+ (80
mM). This selective inhibitory effect of Fs.Cr against PE was
tested for endothelium-dependent nitric oxide (NO) and/or
cholinergic component involvement. The vasodilator effect of Fs.Cr against PE was
retested in the absence and presence of atropine in endothelium (E)-intact and
E-denuded aorta, but no significant shift was observed in the inhibitory effect
of Fs.Cr. Further, Fs.Cr shifted the PE-induced
concentration-response curves (CRCs) to the right in a
dose-dependent manner (1 and 3 mg/mL). This effect was similar to that of
prazosin. All these findings indicate that Flaxseed may mediate its
antihypertensive activity by the alpha-1 receptor antagonist and Ca+2 channel
blocking-like activity, which may account for its efficacy in hypertension.
Keywords: Alpha-1 Receptor antagonist;
aorta; atria; Flaxseed; hypertension; vasodilator
ABSTRACT
Linum usitatissimum (Biji rami)
diketahui secara tradisi digunakan untuk mengawal tekanan darah tinggi. Tujuan
kajian ini adalah untuk memberikan dasar mekanistik penggunaan Biji rami dalam
tekanan darah tinggi. Analisis kromatografi cecair berprestasi tinggi (HPLC) yang kami jalankan menunjukkan adanya sebatian polar (quersetin,
asid nikotinik dan nikotinamida) dalam ekstrak kasar Biji rami (Fs.Cr; metanolik
berair). Pada tikus yang dibius, Fs.Cr mengurangkan tekanan darah arteri (BP) bergantung pada dos (10-100 mg/kg). Semasa diuji untuk mekanisme
tindakannya ex vivo, Fs.Cr menghalang kekuatan dan kadar kontraksi
spontan dalam julat dos 1-10 mg/mL di atria tikus belanda yang terpencil,
serupa dengan bagaimana verapamil, Ca+2 standard
penyekat saluran melakukannya. Selanjutnya, Fs.Cr menunjukkan kesan
pemvasokembang terhadap kontraksi yang disebabkan oleh fenilefrina (PE,
1 μM) pada persiapan cincin aorta tikus (julat kepekatan: 1-10 mg/mL),
sedangkan tidak ada kesan yang diamati terhadap kontraksi yang disebabkan oleh
K+ rendah (25 mM) serta tinggi K+ (80
mM). Kesan penghambatan selektif Fs.Cr terhadap PE diuji
untuk penglibatan komponen nitrat oksida (NO) dan/atau kolinergik yang
bergantung pada endotelium. Kesan kevasokembangan Fs.Cr terhadap PE diuji
semula dengan ketiadaan dan kehadiran atropin dalam aorta endotelium (E)-intact
dan E-denuded, tetapi tidak ada perubahan yang ketara dalam kesan penghambatan
Fs.Cr. Selanjutnya, Fs.Cr mengalihkan lengkung tindak balas kepekatan yang
disebabkan oleh PE (CRC) ke kanan dengan cara yang
bergantung pada dos (1 dan 3 mg/mL). Kesan ini serupa dengan prazosin. Semua
penemuan ini menunjukkan bahawa Biji rami dapat memediasi aktiviti
antihipertensi oleh antagonis reseptor alfa-1 dan aktiviti seperti penyekat
saluran Ca+2, yang mungkin menyumbang
kepada keberkesanannya dalam hipertensi.
Kata
kunci: Antagonis reseptor alfa-1; aorta; atria; Biji rami; kevasokembangan; tekanan
darah tinggi
REFERENCES
Ajay, M., Chai,
H., Mustafa, A., Gilani, A.H. & Mustafa, M.R. 2007. Mechanisms of the
anti-hypertensive effect of Hibiscus sabdariffa L. calyces. Journal
of Ethnopharmacology 109(3): 388-393.
Blenck, C.L.,
Harvey, P.A., Reckelhoff, J.F. & Leinwand, L.A. 2016. The importance of
biological sex and estrogen in rodent models of cardiovascular health and
disease. Circulation Research 118(8): 1294-1312.
Caligiuri, S.P.,
Aukema, H.M., Ravandi, A., Guzman, R., Dibrov, E. & Pierce, G.N. 2014.
Flaxseed consumption reduces blood pressure in patients with hypertension by
altering circulating oxylipins via an α-linolenic acid-induced inhibition
of soluble epoxide hydrolase. Hypertension 64(1): 53-59.
Council National
Research (NRC). 2010. Guide for the Care and Use of Laboratory Animals. Washington:
National Academies Press pp. 1-7.
Cutler, J.A.,
Sorlie, P.D., Wolz, M., Thom, T., Fields, L.E. & Roccella, E.J. 2008.
Trends in hypertension prevalence, awareness, treatment, and control rates in
United States adults between 1988-1994 and 1999-2004. Hypertension 52(5):
818-827.
Doggrell, S.A.
1992. An analysis of the inhibitory effects of prazosin on the phenylephrine
response curves of the rat aorta. Naunyn-Schmiedeberg’s Archives of
Pharmacology 346(3): 294-302.
Dupasquier,
C.M., Weber, A.M., Ander, B.P., Rampersad, P., Steigerwald, S. & Wigle,
J.T., Mitchell, R.W., Kroeger, E.A., Gilchrist, J.S.C., Moghadasian, M.M.,
Lukas, A. & Pierce, G.N. 2006. Effects of dietary flaxseed on vascular
contractile function and atherosclerosis during prolonged hypercholesterolemia
in rabbits. American Journal of Physiology-Heart and Circulatory Physiology 291(6):
H2987-H2996.
Edwards, R.L., Lyon, T., Litwin, S.E., Rabovsky, A., Symons, J.D.
& Jalili, T. 2007. Quercetin reduces blood pressure in hypertensive
subjects. The Journal of Nutrition 137(11): 2405-2411.
Gadegbeku, C.A.,
Dhandayuthapani, A., Shrayyef, M.Z. & Egan, B.M. 2003. Hemodynamic effects
of nicotinic acid infusion in normotensive and hypertensive subjects. American
Journal of Hypertension 16(1): 67-71.
Ghayur, M.N.
& Janssen, L.J. 2010. A natural way to cardiovascular health. Nature
Reviews Cardiology 7(3): 174.
Godfraind, T.
1986. EDRF and cyclic GMP control gating of receptor-operated calcium channels
in vascular smooth muscle. European Journal of Pharmacology 126(3):
341-343.
Gogus, U. &
Smith, C. 2010 - n‐3 Omega fatty acids: A review of current knowledge. International
Journal of Food Science and Technology 45(3): 417-436.
Hassan Gilani,
A., Khan, A.U., Jabbar Shah, A., Connor, J. & Jabeen, Q. 2005. Blood
pressure lowering effect of olive is mediated through calcium channel blockade. International Journal of Food Sciences and Nutrition 56(8): 613-620.
Houle, S.K.,
Padwal, R. & Tsuyuki, R.T. 2013. The 2012-2013 Canadian Hypertension
Education Program (CHEP) guidelines for pharmacists: An update. Canadian
Pharmacists Journal/Revue des Pharmaciens du Canada 146(3): 146-150.
Ignat, I., Volf,
I. & Popa, V.I. 2011. A critical review of methods for characterization of
polyphenolic compounds in fruits and vegetables. Food Chemistry 126(4):
1821-1835.
Jhala, A.J.
& Hall, L.M. 2010. Flax (Linum usitatissimum L.): Current uses and
future applications. Australian Journal of Basic and Applied Sciences 4(9):
4304-4312.
Katz, A.M. 1996.
Calcium channel diversity in the cardiovascular system. Journal of the
American College of Cardiology 28(2): 522-529.
Khalesi, S.,
Irwin, C. & Schubert, M. 2015. Flaxseed consumption may reduce blood
pressure: A systematic review and meta-analysis of controlled trials. The
Journal of Nutrition 145(4): 758-765.
Kumeshini, S.,
Nurshazana, A., Faizah, O., Kamsiah, J., Srijit, D. & Chi, Z.T. 2016.
Development of hypertensive animal model using ovariectomised rat fed with
short-term 2% cholesterol diet. Medicine and Health 11(2): 171-180.
Mackraj, I.,
Govender, T. & Ramesar, S. 2008. The antihypertensive effects of quercetin
in a salt-sensitive model of hypertension. Journal of Cardiovascular Pharmacology 51(3): 239-245.
Mazzaglia, G.,
Ambrosioni, E., Alacqua, M., Filippi, A., Sessa, E. & Immordino, V.,
Borghi, C., Brignoli, O., Caputi, A.P., Cricelli, C. & Mantovani, L.G.
2009. Clinical perspective. Circulation 120(16): 1598-1605.
Ogawa, A., Suzuki, Y., Aoyama, T. & Takeuchi, H. 2009. Dietary
alpha-linolenic acid inhibits angiotensin-converting enzyme activity and mRNA
expression levels in the aorta of spontaneously hypertensive rats. Journal
of Oleo Science 58(7): 355-360.
Okmura, K.,
Ichihara, K., Nagaska, M., Oda, N. & Tajima, K. 1993. Calcium entry
blocking activities of MPC-1304 and of its enantiomers and metabolites. European
Journal of Pharmacology 235(1): 69-74.
Palla, A.H.,
Iqbal, N.T., Minhas, K. & Gilani, A.H. 2016. Flaxseed extract exhibits
mucosal protective effect in acetic acid induced colitis in mice by modulating
cytokines, antioxidant and anti-inflammatory mechanisms. International
Immunopharmacology 38: 153-166.
Palla, A.H.,
Khan, N.A., Bashir, S., Iqbal, J. & Gilani, A.H. 2015. Pharmacological
basis for the medicinal use of Linum usitatissimum (Flaxseed) in
infectious and non-infectious diarrhea. Journal of Ethnopharmacology 160:
61-68.
Park, J.B. &
Velasquez, M.T. 2012. Potential effects of lignan-enriched flaxseed powder on
bodyweight, visceral fat, lipid profile, and blood pressure in rats. Fitoterapia 83(5): 941-946.
Prasad, K. 2019.
Importance of Flaxseed and its components in the management of hypertension. International
Journal of Angiology 28(3): 153-160
Prasad, K. 2013.
Secoisolariciresinol diglucoside (SDG) isolated from flaxseed, an alternative
to ACE inhibitors in the treatment of hypertension. International Journal of
Angiology 22(4): 235-238.
Prasad, K. 2009.
Flaxseed and cardiovascular health. Journal of Cardiovascular Pharmacology 54(5):
369-377.
Prasad, K. 2004.
Antihypertensive activity of secoisolariciresinol diglucoside (SDG) isolated
from flaxseed: Role of guanylate cyclase. International Journal of Angiology 13(1): 7-14.
Rodriguez-Leyva,
D., Weighell, W., Edel, A.L., LaVallee, R., Dibrov, E. & Pinneker, R.,
Maddaford, T.G., Ramjiawan, B., Aliani, M., Guzman, R. & Pierce, G.N. 2013.
Potent antihypertensive action of dietary flaxseed in hypertensive patients. Hypertension 62(6): 1081-1089.
Sanchez, M.,
Galisteo, M., Vera, R., Villar, I.C., Zarzuelo, A., Tamargo, J.,
Pérez-Vizcaíno, F. & Duarte, J. 2006. Quercetin downregulates NADPH
oxidase, increases eNOS activity and prevents endothelial dysfunction in
spontaneously hypertensive rats. Journal of Hypertension 24(1): 75-84.
Schmieder, R.E.,
Langenfeld, M.R., Friedrich, A., Schobel, H.P., Gatzka, C.D. & Weihprecht,
H. 1996. Angiotensin II related to sodium excretion modulates left ventricular
structure in human essential hypertension. Circulation 94(6): 1304-1309.
Sekine, S.,
Sasanuki, S., Aoyama, T. & Takeuchi, H. 2007. Lowering systolic blood
pressure and increases in vasodilator levels in SHR with oral α-linolenic
acid administration. Journal of Oleo Science 56(7): 341-345.
Shin, J.W., Seol, I.C. & Son, C.G. 2010. Interpretation of
animal dose and human equivalent dose for drug development. The Journal of
Korean Oriental Medicine 31(3): 1-7.
Siddiqi, H.S.,
Majeed, A. & Gilani, A.H. 2014. Pharmacological basis for the medicinal use
of Wrightia tinctoria in hypertension and dyslipidemia. Journal of
Cardiovascular Pharmacology 64(2): 151-163.
Sonkusare, S.,
Palade, P.T., Marsh, J.D., Telemaque, S., Pesic, A. & Rusch, N.J. 2006.
Vascular calcium channels and high blood pressure: Pathophysiology and
therapeutic implications. Vascular Pharmacology 44(3): 131-142.
Talom, R.T.,
Judd, S.A., McIntosh, D.D. & McNeill, J.R. 1999. High flaxseed (linseed)
diet restores endothelial function in the mesenteric arterial bed of
spontaneously hypertensive rats. Life Sciences 64(16): 1415-1425.
Taqvi, S.I.,
Aftab, M.T., Ghayur, M.N., Gilani, A.H. & Saify, Z.S. 2006. Synthesis and
biological evaluation of 1-(2’,
4’-dimethoxyphenacyl)-4-acetyl-4-phenylpiperidinium bromide in intestinal and
cardiovascular tissues. Journal of Pharmacology Toxicology 1: 126-133.
Tep-Areenan, P.
& Sawasdee, P. 2011. The vasorelaxant effects of Anaxagorea luzonensis A.
Grey in the rat aorta. International Journal of Pharmacology 7: 119-124.
Udenigwe, C.C.,
Lin, Y.S., Hou, W.C. & Aluko, R.E. 2009. Kinetics of the inhibition of
renin and angiotensin I-converting enzyme by flaxseed protein hydrolysate
fractions. Journal of Functional Foods 1(2): 199-207.
Wang, Z., Yang,
L., Cui, S., Liang, Y. & Zhang, X. 2014. Synthesis and anti-hypertensive
effects of the twin drug of nicotinic acid and quercetin tetramethyl ether. Molecules 19(4): 4791-4801.
Xiao, C.W.,
Wood, C., Huang, W., RL’Abbé, M., Gilani, G.S., Gerard, M.C. & Curran, I.
2006. Tissue-specific regulation of acetyl-CoA carboxylase gene expression by
dietary soya protein isolate in rats. British Journal of Nutrition 95(6):
1048-1054.
Yamamoto, Y.
& Oue, E. 2006. Antihypertensive effect of quercetin in rats fed with a
high-fat high-sucrose diet. Bioscience, Biotechnology, and Biochemistry 70(4):
933-939.
*Corresponding author; email: n_rehman5@hotmail.com
|