Sains Malaysiana 50(9)(2021): 2675-2685
http://doi.org/10.17576/jsm-2021-5009-15
Assessment
of Anti-Tyrosinase, Anti-Elastase and Anti-Acetylcholinesterase Properties of
Fermented Mango Leaves at Different Maturity Level
(Penilaian Sifat Anti-Tirosinase,
Anti-Elastase dan Anti-Asetilkolinesterase Daun Mangga yang Difermentasi pada Tahap Kematangan Berbeza)
NUR DIYANA, A., KOH, S.P.*, AZIZ, N., HAMID, N.S.A.,
ABDULLAH, R., PUTEH, F. & SARAH, S.
Food Science & Technology Research Centre, Malaysian
Agricultural Research and Development (MARDI), Persiaran MARDI-UPM, 43400 Serdang, Selangor Darul Ehsan,
Malaysia
Received: 11 April 2020/Accepted:
10 January 2021
ABSTRACT
Mango leaves are known to possess many
health benefits but the industry only focused on mango fruit production,
resulting in abundant leaves being underutilized. In this study, we managed to
transform mango leaves into a new fermented drink, which has a pleasant taste
through the bio-fermentation process. Different maturity levels of mango leaves
were selected; premature leaves (light brown, LBML),
intermediate mature leaves (light green, LGML) and mature leaves (green, ML),
which were subjected to a fermentation process using bacteria and yeast. Tannin
content, organic acids profile and various enzymes functionality activities
(e.g. inhibition of tyrosinase, elastase and acetylcholinesterase) studies were
determined on fermented mango leaves drink. The reduction of tannins content in
all fermented mango leaves resulted in a less astringent taste as a consequence
of the microbial action to break down tannins. Acetic, oxalic, kojic and quinic acid are some of the organic acids detected in
fermented mango leaves that contributed to its slightly acidic taste. In
comparison to non-fermented mango leaves, all fermented samples, particularly LBML drink showed a significant improvement (P<0.05) in tyrosinase
inhibition (87.96%). Fermented mango leaves also exhibited good inhibition
activity towards elastase (>80%) and acetylcholinesterase (>90%). Further
histopathology examination on various rat’s organs (kidney, liver, spleen, and
stomach) showed no sign of inflammation symptoms. Through limit toxicological evaluation,
the safety consumption rate (IC50 value)
for fermented mango leaves was 1000 mL/50 kg of human bodyweight. The
improvement functionality activities of fermented mango leaves with a higher
inhibition rate against tyrosinase, elastase, and acetylcholinesterase indicate
its great potential as a food remedy for anti-ageing treatment.
Keywords: Organic acids; tannin content;
toxicity effect
ABSTRAK
Daun mangga diketahui mempunyai banyak manfaat kesihatan tetapi industri hanya mementingkan pengeluaran buah mangga, menyebabkan banyak daun mangga yang tidak digunakan sebaiknya. Dalam kajian ini, kami berjaya menambahbaik daun mangga dengan menghasilkan minuman fermentasi baharu yang mempunyai rasa yang menyenangkan melalui proses bio-fermentasi. Daun mangga dengan kematangan yang berbeza telah dipilih: daun pramatang (coklat muda, LBML); daun matang perantaraan (hijau muda, LGML) dan daun matang (hijau, ML)
dan menjalani proses penapaian menggunakan kultur campuran bakteria dan yis. Kandungan tanin, profil asid organik dan pelbagai aktiviti berfungsi enzim (contoh: perencatan tirosinase, elastase dan asetilkolinesterase) dikaji pada minuman mangga difermentasi. Pengurangan kandungan tanin pada semua daun mangga yang difermentasi telah menyebabkan kurang rasa pahit akibat tindakan penguraian tanin oleh mikroorganisma. Asid asetik, oksalat, kojik dan kuinik yang dikesan di dalam daun mangga difermentasi menyumbang kepada rasa yang bersifat sedikit berasid. Secara perbandingan, kepada daun mangga yang tidak difermentasi, terutamanya minuman LBML menunjukkan peningkatan (P<0.05) terhadap perencatan tirosinase (87.96%). Daun mangga yang difermentasi juga menunjukkan aktiviti perencatan yang baik terhadap aktiviti elastase
(>8%) dan asetilkolinesterase (>90%). Tambahan pula, kajian histopatologi terhadap pelbagai organ tikus (buah pinggang, hati, limpa dan perut) menunjukkan tiada gejala keradangan. Melalui penilaian had keracunan toksikologi, kadar penggunaan selamat (nilai IC50) untuk daun mangga terfermentasi adalah 1000 mL/50 kg berat badan manusia. Peningkatan aktiviti berfungsi ke atas daun mangga difermentasi dengan kadar perencatan yang tinggi terhadap tirosinase, elastase dan asetilkolinesterase menunjukkan potensi yang besar sebagai makanan kesihatan untuk rawatan anti-penuaan.
Kata kunci: Asid organik; kandungan tanin; kesan kesitotoksikan
REFERENCES
Ashok, P.K.
& Upadhyaya, K. 2012. Tannins are astringent. Journal of Pharmacognosy
and Phytochemistry 1(3): 45-50.
Colovic,
M.B., Krstic, D.Z., Lazarevic-Pasti,
T.D., Bondzic, A.M., Vesna, M. & Vasić, V.M. 2013. Acetylcholinesterase inhibitors:
Pharmacology and toxicology. Current Neuropharmacology 11(3): 315-335.
Du, Z., Fanshi, F., Lai, Y.H., Chen, J.R., Hao, E., Deng, J. &
Hsiao, C.D. 2019. Mechanism of anti-dementia effects of mangiferin in a senescence-accelerated mouse (SAMP8) model. Bioscience Reports 39(9):
BSR20190488.
Ebanks,
J.P., Wickett, R.R. & Boissy,
R.E. 2009. Mechanisms regulating skin pigmentation: The rise and fall of
complexion coloration. International Journal of Molecular Sciences 10(9):
4066-4087.
Ellman, G.L.,
Courtney, K.D., Andres Jr., V. & Featherstone, R.M. 1961. A new and rapid
colorimetric determination of acetylcholinesterase activity. Biochemical
Pharmacology 88-90: 91-95.
Faria-Oliveira,
F., Diniz, R.H.S., Godoy-Santos, F., Pilo, F.B., Mezadri, H., Castro,
I.M. & Brandao, R.L. 2015. The Role of Yeast
and Lactic Acid Bacteria in the Production of Fermented Beverages in South
America. https://www.intechopen.com/books/food-production-and-industry/the-role-of-yeast-and-lactic-acid-bacteria-in-the-production-of-fermented-beverages-in-south-america.
Jayabalan,
R., Malbasa, R.V., Loncar, E.S., Vitas, J.S. & Sathishkumar, M. 2014. A review on Kombucha tea -
Microbiology, composition, fermentation, beneficial effects, toxicity and tea
fungus. Comprehensive Review in Food Science and Food Safety 13(4):
538-550.
Jung, K., Lee,
B., Han, S.J., Ryu, J.H. & Kim, D.H. 2009. Mangiferin ameliorates scopolamine-induced learning deficits in mice. Biological and Pharmaceutical
Bulletin 32: 242-246.
Koh, S.P., Sharifudin, S.A., Abdullah,
R.A., Hamid, N.S., Mirad, R. & Mustaffa, R. 2019. Antimicrobial efficacy of fermented
mango leaves beverage towards selected foodborne pathogens. Malaysian
Journal of Microbiology 15(4): 320-326.
Kulkarni, V.M.
& Rathod, V.K. 2018. Exploring the potential of Mangifera indicaleaves extract versus mangiferin for therapeutic application. Agriculture and Natural Resources 52(2):
155-161.
Liyanaarachchi, G.D., Samarasekara, J.K.R.R., Mahanama, R. & Hemalal, P.
2018. Tyrosinase, elastase, hyaluronate ideas, inhibitory and antioxidant
activity of Sri Lankan medicinal plants for novel cosmeceuticals. Industrial
Crops and Products 111: 597-606.
Neffe-Skoci´nska, K., Sionek, B., Scibisz,
I. & Koło˙zyn-Krajewska, D. 2017. Acid
contents and the effect of fermentation condition of Kombucha tea beverages on
physicochemical, microbiological and sensory properties. Journal of Food 15:
601-607.
Ochocka,
R., Hering, A., Stefanowicz-Hajduk, J., Cal, K. & Baraska, H. 2017. The effect of mangiferin on skin: Penetration, permeation and inhibition of ECM enzymes. PLoS ONE https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0181542.
Poffley,
M. & Owens, G. 2006. Mango pruning in the top end. In Northern Territory
of Australia www.nt.gov.au/dpifm. p. 4. Accessed on 30 July 2019.
Rasul, A.,
Akhtar, N., Khan, B.A., Mahmood, T., Uz Zaman, S.
& Khan, H.M. 2012. Formulation development of a cream containing fennel
extract: In vivo evaluation for anti-ageing effects. Pharmazie 67: 54-58.
Sethiya,
N.K. & Mishra, S. 2014. Investigation of mangiferin,
as a promising natural polyphenol xanthone on multiple targets of Alzheimer’s
disease. Journal of Biologically Active Products from Nature 4: 111-119.
Shi, F., Xie, L., Lin, Q., Tong, C., Fu, Q., Xu, J., Xiao, J. &
Shi, S. 2020. Profiling of tyrosinase inhibitors in mango leaves for a
sustainable agro-industry. Food Chemistry 312:
126042.
Song, J.H., Bae,
E.Y., Choi, G., Hyun, J.W., Lee, M.Y., Lee, H.W. & Chae,
S. 2013. Protective effect of mango (Mangifera indicaL.) against UVB‐induced skin ageing
in hairless mice. Photodermatology, Photoimmunology and Photomedicine 29(2): 84-89.
Suganya,
P., Karnan, J., Mallavarapu,
G.R. & Murugan, R. 2015. Comparison of the
chemical composition, tyrosinase inhibitory and anti-inflammatory activities of
the essential oils of Pogostemon plectranthodesfrom India. Industrial Crops and
Products 69: 300-307.
Tambe,
V.D. & Bhambar, R.S. 2014. Estimation of total
phenol, tannin, alkaloid and flavonoid in Hibiscus tiliaceusLinn. Wood extracts. Research & Reviews: Journal of Pharmacognosy
and Phytochemistry 2(4): 41-47.
Tang, S.C. &
Yang, J.H. 2018. Dual effects of alpha-hydroxy acids on the skin. Molecules 23(4):
863.
Taylor, M.B., Yanaki, J.S., Draper, D.O., Shurtz,
J.C. & Coglianese, M. 2013. Successful short-term
and long-term treatment of melasma and postinflammatory hyperpigmentation using vitamin C with a full-face iontophoresis mask and a mandelic/malic acid skin care regimen. Journal of Drugs
Dermatology 12(1): 45-50.
Tu, P.T.B. & Tawata, S. 2015. Anti-oxidant, anti-aging, and
anti-melanogenic properties of the essential oils from two varieties of Alpinia
zerumbet. Molecules 20(9): 16723-16740.
Wightman, E.L.,
Jackson, P.A., Forster, J., Khan, J., Wiebe, J.C., Gericke, N. & Kennedy,
D.O. 2020. Acute effects of a polyphenol-rich leaf extract of Mangifera indicaL.
(Zynamite) on cognitive function in healthy adults: A
double-blind, placebo-controlled crossover study. Nutrients 12(8): 2194.
Watawana, M.I., Jayawardena, N., Gunawardhana,
C.B. & Waisundara, V.Y. 2015. Health, wellness,
and safety aspects of the consumption of Kombucha. Journal of Chemistry 2015:
Article ID. 591869.
Wurger,
G., McGaw, L.J. & Eloff, J.N. 2014. Tannin content of leaf extracts of 53
trees used traditionally to treat diarrhoea is an important criterion in
selecting species for further work. South African Journal of Botany 90:
114-117.
*Corresponding author; email: karenkoh@mardi.gov.my
|