Sains Malaysiana 51(10)(2022):
3171-3182
http://doi.org/10.17576/jsm-2022-5110-05
Comparative
Analysis on the Role of 2,4-dichlorophenoxyacetic Acid in the Expression of
Bioactive Compounds in Callus of Capsicum frutescens
(Analisis Perbandingan Peranan Asid 2,4-diklorofenoksiasetik dalam Pengekspresan Sebatian Bioaktif dalam Kalus Capsicum frutescens)
JAMILAH
SYAFAWATI YAACOB1,2,*, MUHAMMAD AIMAN RAMLI1,
MUHAMAD HAFIZ ABD RAHIM3, ABIGAIL MARIE ROBERT SELVARAJ1 & LAAVANYA NYANASAIGRAN1
1Institute of Biological Sciences,
Faculty of Science, Universiti Malaya, 50603 Kuala
Lumpur, Federal Territory, Malaysia
2Centre for Research in
Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
3Faculty of Food Science and
Technology, Universiti Putra Malaysia, 43400 UPM
Serdang, Selangor Darul Ehsan, Malaysia
Received: 26 November
2021/Accepted: 14 June 2022
Abstract
Plant
cell culture technology serves as an effective alternative system for in vitro production of bioactive molecules, as it allows for the exploration of valuable
compounds under a controlled environment. The present study was conducted to
evaluate the effect of plant growth regulator (PGR); 2,4-dichlorophenoxyacetic
acid (2,4-D) on the expression of compounds in coloured callus of Capsicum frutescens, a vital spice in various cuisines
worldwide. The differential
accumulation of compounds in the callus was analysed using liquid chromatography-mass spectrometry (LCMS) and the
PGR concentration that resulted in the highest accumulation of the valuable
compounds was identified. In this study, calli of
various colours (cream, yellow and green) were successfully produced from C. frutescens through plant tissue culture. The
increase in 2,4-D concentrations was found to increase callus growth index (GI)
and specific growth rate (Sg),
where the highest GI (0.5690) and Sg (0.6348 mg/week) were observed in callus produced in media supplemented with
0.5 mg/L 2,4-D. LCMS data analyses showed that 19 compounds were detected in
the callus, with 8 compounds (fatty acids and phenolics) were successfully
identified, while the remaining 11 compounds were reported as unknowns.
Yellow-coloured callus was observed to contain the highest number of compounds
(18 compounds), while green callus contained the least (14 compounds). This
analysis provides valuable information on the application of biotechnological
tools such as plant tissue culture as an alternative for sustainable production
of compounds with high bioactivity in Capsicum frutescens.
Keywords: 2,4-dichlorophenoxyacetic acid; Capsicum frutescens; compounds; LCMS; plant growth regulator
Abstrak
Teknologi kultur sel tumbuhan berfungsi sebagai sistem alternatif yang berkesan untuk menghasilkan molekul bioaktif secara in vitro kerana ia membolehkan penerokaan sebatian berharga dijalankan di bawah persekitaran yang terkawal. Kajian ini dijalankan untuk menilai kesan pengatur pertumbuhan tumbuhan (PGR); asid 2,4-diklorofenoksiasetik (2,4-D) ke atas pengekspresan sebatian dalam kalus berwarna Capsicum frutescens yang merupakan rempah penting dalam pelbagai masakan di seluruh dunia. Perbezaan kandungan sebatian dalam kalus tersebut dianalisis menggunakan kromatografi cecair spektrometri jisim (LCMS) dan sukatan PGR yang menghasilkan kandungan sebatian yang tertinggi telah dikenal pasti. Dalam kajian ini, kalus pelbagai warna (krim, kuning dan hijau) berjaya dihasilkan daripada C. frutescens melalui kultur tisu tumbuhan. Peningkatan sukatan 2,4-D didapati meningkatkan indeks pertumbuhan kalus (GI) dan kadar pertumbuhan khusus (Sg) dengan kalus yang dihasilkan dalam media yang ditambah dengan 0.5 mg/L 2,4-D didapati menunjukkan GI (0.5690)
dan Sg (0.6348 mg/minggu) yang paling tinggi. Analisis data LCMS pula menunjukkan bahawa 19 sebatian telah dikesan dalam kalus tersebut dengan 8 sebatian (asid lemak dan fenolik) berjaya dikenal pasti, manakala 11 sebatian selebihnya dilaporkan sebagai tidak diketahui. Kalus berwarna kuning didapati mengandungi jumlah sebatian tertinggi (18 sebatian), manakala kalus hijau mengandungi jumlah sebatian yang paling sedikit (14 sebatian). Analisis ini telah memberi maklumat berharga tentang aplikasi teknik bioteknologi seperti kultur tisu tumbuhan sebagai alternatif untuk penghasilan sebatian dengan bioaktiviti tinggi dalam Capsicum frutescens secara mapan.
Kata kunci: Asid 2,4-diklorofenoksiasetik; Capsicum frutescens; LCMS; pengatur pertumbuhan tumbuhan; sebatian
REFERENCES
Abbas, M.S.,
El-Shabrawi, H.M., Soliman, A.S. & Selim, M.A. 2018. Optimization of
germination, callus induction, and cell suspension culture of African locust
beans Parkia biglobosa (Jacq.) Benth. Journal of Genetic Engineering and Biotechnology 16(1): 191-201.
Aboul-Enein, A.M.,
El-Ela, F.A., Shalaby, E.A. & El-Shemy, H.A. 2012. Traditional medicinal
plants research in Egypt: Studies of antioxidant and anticancer activities. Journal of Medicinal Plants Research 6(5): 689-703.
Adil, M., Abbasi, B.H.
& ul Haq, I. 2019. Red light controlled callus morphogenetic patterns and
secondary metabolites production in Withania somnifera L. Biotechnology Reports 24: e00380.
Adil, M., Ren, X., Kang,
D.I. & Jeong, B.R. 2018. Effect of explant type and plant growth regulators
on callus induction, growth and secondary metabolites production in Cnidium
officinale Makino. Molecular Biology
Reports 45(6): 1919-1927.
Alam, M.A., Syazwanie,
N.F., Mahmod, N.H., Badaluddin, N.A., Mustafa, K.A., Alias, N., Aslani, F.
& Prodhan, M.A. 2018. Evaluation of antioxidant compounds, antioxidant
activities and capsaicinoid compounds of Chili (Capsicum sp.) germplasms
available in Malaysia. Journal of Applied
Research on Medicinal and Aromatic Plants 9: 46-54.
Balla, J.,
Medveďová, Z., Kalousek, P., Matiješčuková, N., Friml, J., Reinöhl,
V. & Procházka, S. 2016. Auxin flow-mediated competition between axillary
buds to restore apical dominance. Scientific
Reports 6: 35955.
Bhatia, S. 2015. Chapter
2 - Plant tissue culture. In Modern
Applications of Plant Biotechnology in Pharmaceutical Sciences, edited by
Bhatia, S., Sharma, K., Dahiya, R. & Bera, T. Boston: Academic Press. pp. 31-107.
Bhojwani, S.S. &
Dantu, P.K. 2013. Culture Media. Plant
Tissue Culture: An Introductory Text. Springer. pp. 27-37.
Bosland, P.W., Votava,
E.J. & Votava, E.M. 2012. Peppers:
Vegetable and Spice Capsicums. CABI.
Budisantoso,
I., Amalia, N. & Kamsinah, K. 2017. In vitro callus induction from
leaf explants of Vanda sp. stimulated by 2, 4-D. Biosaintifika: Journal of Biology & Biology Education 9(3):
492-497.
Chuah,
A.M., Lee, Y.C., Yamaguchi, T., Takamura, H., Yin, L.J. & Matoba, T. 2008.
Effect of cooking on the antioxidant properties of coloured peppers. Food Chemistry 111(1): 20-28.
Csilléry,
G. 2006. Pepper taxonomy and the botanical description of the species. Acta Agronomica Hungarica 54(2):
151-166.
da
Rocha Neto, A.C., Maraschin, M. & Di Piero, R.M. 2015. Antifungal activity
of salicylic acid against Penicillium expansum and its possible
mechanisms of action. International
Journal of Food Microbiology 215: 64-70.
do
Rêgo, M.M., do Rêgo, E.R. & Barroso, P.A. 2016. Tissue culture of Capsicum spp. In Production and Breeding of Chilli
Peppers (Capsicum spp.). Springer. pp. 97-127.
Dubey,
S. 2017. Indian spices and their medicinal value. Indian Journal of Pharmaceutical Education and Research 51(3):
S330-S332.
Ebrahimi,
M.A. & Payan, A. 2013. Induction of callus and somatic embryogenesis from
cotyledon explants of Fagonia indica Burm. Journal of Medicinal Plants and By-Products 2(2): 209-214.
Furumoto,
H., Nanthirudjanar, T., Kume, T., Izumi, Y., Park, S.B., Kitamura, N., Kishino,
S., Ogawa, J., Hirata, T. & Sugawara, T. 2016. 10-Oxo-trans-11-octadecenoic
acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus
plantarum is cytoprotective against oxidative stress. Toxicology and Applied Pharmacology 296: 1-9.
Fusco,
B.M. & Alessandri, M. 1992. Analgesic effect of capsaicin in idiopathic
trigeminal neuralgia. Anesthesia and
Analgesia 74(3): 375-377.
Guedes,
V., Castro, J.P. & Brito, I. 2018. Topical capsaicin for pain in
osteoarthritis: A literature review. Reumatología
Clínica (English Edition) 14(1): 40-45.
Gupta,
S.C., Prasad, S., Tyagi, A.K., Kunnumakkara, A.B. & Aggarwal, B.B. 2017.
Neem (Azadirachta indica): An indian traditional panacea with modern
molecular basis. Phytomedicine 34:
14-20.
Gurnani,
N., Gupta, M., Mehta, D. & Mehta, B.K. 2016. Chemical composition, total
phenolic and flavonoid contents, and in vitro antimicrobial and
antioxidant activities of crude extracts from red chilli seeds (Capsicum
frutescens L.). Journal of Taibah
University for Science 10(4): 462-470.
Hegde,
V., Partap, P. & Yadav, R. 2017. Plant regeneration from hypocotyl explants
in capsicum (Capsicum annuum L.). International
Journal of Current Microbiology and Applied Sciences 6(7): 545-557.
Higashitani,
A. 2013. High temperature injury and auxin biosynthesis in microsporogenesis. Frontiers in Plant Science 4: 47.
Johnson,
T.S., Ravishankar, G.A. & Venkataraman, L.V. 1991. Elicitation of capsaicin
production in freely suspended cells and immobilized cell cultures of Capsicum
frutescens mill. Food Biotechnology 5(2): 197-205.
Jørgensen,
M.R. & Pedersen, A.M.L. 2017. Analgesic effect of topical oral capsaicin
gel in burning mouth syndrome. Acta
Odontologica Scandinavica 75(2): 130-136.
Kantar,
M.B., Anderson, J.E., Lucht, S.A., Mercer, K., Bernau, V., Case, K.A., Le,
N.C., Frederiksen, M.K., DeKeyser, H.C. & Wong, Z.Z. 2016. Vitamin
variation in Capsicum spp. provides opportunities to improve nutritional
value of human diets. PLoS ONE 11(8):
e0161464.
Karakas,
F.P. 2020. Efficient plant regeneration and callus induction from nodal and
hypocotyl explants of goji berry (Lycium barbarum L.) and comparison of
phenolic profiles in calli formed under different combinations of plant growth
regulators. Plant Physiology and
Biochemistry 146: 384-391.
Khan,
N., Bano, A.M. & Babar, A. 2020. Impacts of plant growth promoters and plant
growth regulators on rainfed agriculture. PloS
ONE 15(4): e0231426.
Kumar,
S., Mehta, N., Singh, J.K., Kumar, M. & Kumar, A. 2017. A protocol for
callus induction in chilli genotypes from hypocotyls as explant. International Journal of Current Microbiology
and Applied Sciences 6(10): 4937-4942.
Luczkiewicz,
M., Kokotkiewicz, A. & Glod, D. 2014. Plant growth regulators affect
biosynthesis and accumulation profile of isoflavone phytoestrogens in
high-productive in vitro cultures of Genista tinctoria. Plant Cell, Tissue and Organ Culture 118(3): 419-429.
Mahendra,
C., Murali, M., Manasa, G. & Sudarshana, M. 2020. Biopotentiality of leaf
and leaf derived callus extracts of Salacia macrosperma Wight. — An
endangered medicinal plant of Western Ghats. Industrial Crops and Products 143: 111921.
Martínez,
S., López, M., González-Raurich, M. & Bernardo Alvarez, A. 2005. The
effects of ripening stage and processing systems on vitamin C content in sweet
peppers (Capsicum annuum L.). International
Journal of Food Sciences and Nutrition 56(1): 45-51.
Materska,
M. & Perucka, I. 2005. Antioxidant activity of the main phenolic compounds
isolated from hot pepper fruit (Capsicum annuum L.). Journal of Agricultural and Food Chemistry 53(5): 1750-1756.
McCarthy-Suárez,
I. 2017. Role of reactive oxygen species in auxin herbicide phytotoxicity:
Current information and hormonal implications - are gibberellins, cytokinins,
and polyamines involved? Botany 95(4): 369-385.
Murashige,
T. & Skoog, F. 1962. A revised medium for rapid growth and bio assays with
tobacco tissue cultures. Physiologia
Plantarum 15(3): 473-497.
Okoye,
T.C., Uzor, P.F., Onyeto, C.A. & Okereke, E.K. 2014. 18 - Safe African
medicinal plants for clinical studies. In Toxicological
Survey of African Medicinal Plants, edited by Kuete, V. Elsevier. pp. 535-555.
Osman,
N.I., Sidik, N.J. & Awal, A. 2016. Effects of variations in culture media
and hormonal treatments upon callus induction potential in endosperm explant of Barringtonia racemosa L. Asian
Pacific Journal of Tropical Biomedicine 6(2): 143-147.
Othman,
A., Ismail, I., Abdullah, N. & Ahmad, S. 2019. Identification of
anti-inflammatory compound/compounds in hexane fraction of Jatropha curcas root extract. Asia-Pacific Journal of
Molecular Biology and Biotechnology 27(4): 62-68.
Parsaeimehr,
A., Martinez-Chapa, S.O. & Parra-Saldívar, R. 2017. Chapter 13 - Medicinal
plants versus skin disorders: A survey from ancient to modern herbalism. In The Microbiology of Skin, Soft Tissue, Bone
and Joint Infections, edited by Kon, K. & Rai, M. Boston: Academic
Press. pp. 205-221.
Priscilla,
D.H. & Prince, P.S.M. 2009. Cardioprotective effect of gallic acid on
cardiac troponin-T, cardiac marker enzymes, lipid peroxidation products and
antioxidants in experimentally induced myocardial infarction in Wistar rats. Chemico-Biological Interactions 179(2-3): 118-124.
Ptak,
A., Tahchy, A., Skrzypek, E., Wójtowicz, T. & Laurain-Mattar, D. 2013.
Influence of auxins on somatic embryogenesis and alkaloid accumulation in Leucojum
aestivum callus. Open Life Sciences 8(6): 591-599.
Qin,
Y., Ran, L., Wang, J., Yu, L., Lang, H.D., Wang, X.L., Mi, M.T. & Zhu, J.D.
2017. Capsaicin supplementation improved risk factors of coronary heart disease
in individuals with low HDL-C levels. Nutrients 9(9): 1037.
Raber,
J.M., Reichelt, D., Grüneberg-Oelker, U., Philipp, K., Stubbe-Dräger, B. &
Husstedt, I.W. 2015. Capsaicin 8% as a cutaneous patch (Qutenza™): Analgesic
effect on patients with peripheral neuropathic pain. Acta Neurologica Belgica 115(3): 335-343.
Radić,
S., Vujčić, V., Glogoški, M. & Radić-Stojković, M.
2016. Influence of pH and plant growth regulators on secondary metabolite
production and antioxidant activity of Stevia rebaudiana (Bert). Periodicum Biologorum 118(1): 9-19.
Raj,
D., Kokotkiewicz, A., Drys, A. & Luczkiewicz, M. 2015. Effect of plant
growth regulators on the accumulation of indolizidine alkaloids in Securinega
suffruticosa callus cultures. Plant
Cell, Tissue and Organ Culture 123(1): 39-45.
Rameshkumar,
R., Satish, L., Pandian, S., Rathinapriya, P., Rency, A.S., Shanmugaraj, G.,
Pandian, S.K., Leung, D.W. & Ramesh, M. 2018. Production of squalene with
promising antioxidant properties in callus cultures of Nilgirianthus
ciliatus. Industrial Crops and
Products 126: 357-367.
Reid,
J.B. & Ross, J.J. 2011. Regulation of tissue repair in plants. Proceedings of the National Academy of
Sciences 108(42): 17241-17242.
Renfiyeni,
Y. & Trisno, J. 2017. Calli induction of some chili pepper (Capsicum
annuum l.) genotypes as material for genetic transformation. International Journal of Agricultural
Sciences 1(1): 75-80.
Rizwan,
H.M., Irshad, M., He, B., Liu, S., Lu, X., Sun, Y. & Qiu, D. 2020. Role of
reduced nitrogen for induction of embryogenic callus induction and regeneration
of plantlets in Abelmoschus esculentus L. South African Journal of Botany 130: 300-307.
Sachan,
A., Kumar, S., Kumari, K. & Singh, D. 2018. Medicinal uses of spices used
in our traditional culture: Worldwide. Journal
of Medicinal Plants Studies 6(3): 116-122.
Sahraroo,
A., Babalar, M., Mirjalili, M.H., Fattahi Moghaddam, M.R. & Nejad Ebrahimi,
S. 2014. In-vitro callus induction and rosmarinic acid quantification in
callus culture of Satureja khuzistanica Jamzad (Lamiaceae). Iranian Journal of Pharmaceutical Research 13(4): 1447-1456.
Sobhani,
M., Farzaei, M.H., Kiani, S. & Khodarahmi, R. 2020. Immunomodulatory;
anti-inflammatory/antioxidant effects of polyphenols: A comparative review on
the parental compounds and their metabolites. Food Reviews International 37(8): 759-811.
Song,
Y. 2014. Insight into the mode of action of 2, 4‐dichlorophenoxyacetic
acid (2, 4‐D) as an herbicide. Journal
of Integrative Plant Biology 56(2): 106-113.
Suwanseree,
V., Phansiri, S. & Yapwattanaphun, C. 2019. A comparison of callus
induction in 4 Garcinia species. Electronic
Journal of Biotechnology 40: 45-51.
Tarigholizadeh,
S., Motafakkerazad, R., Kosari-Nasab, M., Movafeghi, A., Mohammadi, S., Sabzi,
M. & Talebpour, A.H. 2021. Influence of plant growth regulators and
salicylic acid on the production of some secondary metabolites in callus and
cell suspension culture of Satureja sahendica Bornm. Acta Agriculturae Slovenica 117(4):
1-12.
Varghese,
S., Kubatka, P., Rodrigo, L., Gazdikova, K., Caprnda, M., Fedotova, J., Zulli,
A., Kruzliak, P. & Büsselberg, D. 2017. Chili pepper as a body weight-loss
food. International Journal of Food
Sciences and Nutrition 68(4): 392-401.
Veeresham,
C. 2012. Natural Products Derived from Plants as a Source of Drugs.
Wolters Kluwer--Medknow Publications.
Zemlyanskaya,
E.V., Omelyanchuk, N.A., Ubogoeva, E.V. & Mironova, V.V. 2018. Deciphering
auxin-ethylene crosstalk at a systems level. International Journal of Molecular Sciences 19(12): 4060.
Zhao,
M.T., Liu, Z.Y., Li, A., Zhao, G.H., Xie, H.K., Zhou, D.Y. & Wang, T. 2021.
Gallic acid and its alkyl esters emerge as effective antioxidants against lipid
oxidation during hot air drying process of Ostrea talienwhanensis. LWT 139: 110551.
*Corresponding author; email: jamilahsyafawati@um.edu.my
|