Sains Malaysiana 51(12)(2022):
3995-4008
http://doi.org/10.17576/jsm-2022-5112-10
Pengoptimuman Penyingkiran Sulfamethoxazole melalui Kaedah Gerak Balas Permukaan menggunakan Reka Bentuk Komposit Berpusatkan Muka
(Optimization of Sulfamethoxazole Removal by Surface Reaction Method using Face Centered Composite Design)
WAN
YUSREENA ILYA WAN AZIZEE & NURFAIZAH ABU TAHRIM*
Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:14 March 2022/Accepted: 26 August
2022
Abstrak
Pencemaran disebabkan oleh sisa farmaseutik semakin membimbangkan sejak kebelakangan ini kerana ia memberi kesan buruk terutamanya kepada alam sekitar. Terdapat pelbagai kaedah yang dicadangkan oleh penyelidik untuk menyingkirkan bahan cemar tersebut. Penjerapan menggunakan karbon teraktif merupakan salah satu kaedah yang sering digunakan untuk menyingkirkan sisa farmaseutik dalam air. Untuk memperoleh peratus penyingkiran yang maksimum, pengoptimuman perlu dilakukan. Tujuan kajian ini adalah untuk mengoptimumkan parameter yang mempengaruhi penjerapan sulfamethoxazole (SMX). Pengoptimuman dilakukan melalui kaedah gerak balas permukaan (RSM) dengan reka bentuk berpusatkan muka (FCCCD). Parameter yang dikaji adalah kepekatan asal larutan SMX, dos karbon teraktif dan juga masa interaksi. Daripada analisis RSM, model kuadratik telah dibangunkan dengan nilai pekali penentuan, R2 0.9861. Berdasarkan analisis tersebut, didapati dos karbon teraktif dan masa interaksi adalah paling signifikan dalam mempengaruhi peratus penyingkiran SMX berbanding kepekatan asal larutan SMX. Keadaan optimum parameter adalah kepekatan asal larutan SMX = 6 mg/L, dos karbon teraktif = 30 mg dan masa interaksi = 78.02 minit dengan peratus penyingkiran yang dicapai adalah 99.65%. Secara keseluruhannya, hasil kajian menunjukkan bahawa keadaan optimum yang telah dicadangkan oleh RSM boleh digunakan dalam penjerapan SMX. Selain itu, proses penjerapan SMX ialah jerapan kimia dan berlaku secara berbilang lapisan pada permukaan heterogen.
Kata kunci: Air; kaedah gerak balas permukaan (RSM); pengoptimuman; reka bentuk komposit berpusatkan muka (FCCCD); sulfamethoxazole
Abstract
Pollution caused by pharmaceutical waste has become
a concern these days due to its negative effect especially towards the
environment. There were various kinds of methods that had been suggested by
researchers to remove these contaminants. Adsorption using activated carbon was
one of the most commonly used method to remove pharmaceutical waste in water.
In order to obtain the maximum percentage removal, optimization need to be
done. The purpose of this study was to optimize the parameters that affect the
adsorption of sulfamethoxazole (SMX)
in water to achieve the maximum percentage removal of SMX. The optimization was
done by response surface method using face-centered central composite design
(FCCCD). The parameters studied were initial concentration of SMX, activated
carbon dosage and interaction time. From the RSM analysis, quadratic model was
developed with the value of coefficient, R2 0.9681. Based on the
analysis, the dosage of activated carbon and the time of interactions were the
most significant in affecting the percentage removal of SMX compared to initial
concentration of SMX. The optimum parameter conditions obtained were the
initial concentration of SMX solution = 6 mg/L, activated carbon dosage = 30 mg
and interaction time = 78.02 min, with a removal percentage of 99.65%. Overall,
the results show that the optimum conditions suggested by RSM can be used in
the adsorption of SMX. Other than that, the adsorption process of SMX were
chemisorption and it occurred in multilayer on a heterogenous surface.
Keywords: Face-centered central composite design
(FCCCD); optimization; response surface method (RSM); sulfamethoxazole; water
REFERENCES
Affam, A.C. 2020. Conventional steam activation for conversion of
oil palm kernel shell biomass into activated carbon via biochar product. Global Journal of Environmental Science and Management 6(1):
15-30.
Aksoy, D.O. & Sagol, E. 2016.
Application of central composite design method to coal flotation: Modelling,
optimization and verification. Fuel 183: 609-616.
Ani, J.U., Okoro, U.C., Aneke, L.E., Onukwuli, O.D., Obi,
I.O., Akpomie, K.G. & Ofomatah,
A.C. 2019. Application of response surface methodology for optimization of
dissolved solids adsorption by activated coal. Applied Water Science 9(3). DOI:10.1007/s13201-019-0943-7
Arneli, Safitri, Z.F., Pangestika, A.W., Fauziah, F., Wahyuningrum, V.W. & Astuti,
Y. 2017. The influence of activating agents on the performance of rice
husk-based carbon for sodium lauryl sulfate and chrome (Cr) metal adsorption. IOP Conference Series: Materials Science and
Engineering 172: 012007.
Bachrun, S., Ayurizka, N., Annisa, S. & Arif, H. 2016. Preparation and characterization of activated carbon from sugarcane bagasse by physical activation with CO2 gas. IOP Conference Series: Materials Science and Engineering 105(1): 1-8.
Dastkhoon, M., Ghaedi, M., Asfaram, A., Goudarzi, A., Mohammadi, S.M. & Wang, S. 2017. Improved adsorption
performance of nanostructured composite by ultrasonic wave: Optimization
through response surface methodology, isotherm and kinetic studies. Ultrasonics Sonochemistry 37: 94-105.
Dias-Ferreira, C., Valente, S. & Vaz,
J. 2016. Practices of pharmaceutical waste generation and discarding in
households across Portugal. Waste Management and Research 34(10):
1006-1013.
Edet, U.A. & Ifelebuegu, A.O.
2020. Kinetics, isotherms, and thermodynamic modeling of the adsorption of
phosphates from model wastewater using recycled brick waste. Processes 8(6): 665.
Hassan, S.S., El-Shafie, A.S., Zaher, N. & El-Azazy, M.
2020. Application of pineapple leaves as adsorbents for removal of rose bengal from wastewater: Process optimization operating
face-centered central composite design (FCCCD). Molecules 25(16): 3752.
Karimifard, S. & Alavi Moghaddam, M.R. 2018. Application of response surface
methodology in physicochemical removal of dyes from wastewater: A critical
review. Science of the Total Environment 640-641: 772-797.
Kashefi, S., Borghei, S.M. & Mahmoodi, N.M. 2019. Application of face-centered central
composite design (FCCCD) in optimization of enzymatic decolorization of two azo dyes: A modeling vs. empirical comparison. Prog.
Color Colorants Coat 12: 179-190.
Luo, Y., Li, D., Chen, Y., Sun, X., Cao, Q. & Liu, X.
2019. The performance of phosphoric acid in the preparation of activated
carbon-containing phosphorus species from rice husk residue. Journal of Materials Science 54(6):
5008-5021.
Manikam, M.K., Maizatul Intan Syafinaz, Azhar, A.H. & Marlia, M.H.
2019. Penyingkiran ammonia dan permintaan oksigen kimia daripada air sisa kumbahan menggunakan media penjerap komposit karbon teraktif. Sains Malaysiana 48(11): 2529-2539.
Misran, E., Sarah, M., Irvan, Dina, S.F., Harahap, S.A.A. & Nazar, A. 2020. Activated carbon preparation from bagasse and banana stem at various impregnation ratio. Journal of Physics: Conference Series 1542(1): 1-6.
Mistar, E.M., Hasmita, I., Alfatah, T., Muslim, A. & Supardan,
M.D. 2019. Adsorption of mercury(II) using activated carbon produced from Bambusa vulgaris var. Striata in
a fixed-bed column. Sains Malaysiana 48(4): 719-725.
Myers, R.H., Montgomery, D.C. & Anderson-Cook, C.M.
2016. Response Surface Methodology:
Process and Product Optimization Using Designed Experiments. 4th ed. New
Jersey: John Wiley & Sons.
Nor Hidayatika, A., Mohamad Azuwa, M. & Siti Fairus, M.Y. 2020. Improved adsorption performance of
rubber-based hydrogel: Optimisation through response
surface methodology, isotherm, and kinetic studies. Journal of Sol-Gel
Science and Technology 94(2): 322-334.
Nurfaizah, A.T., Md. Pauzi, A. & Yang
Farina, A.A. 2018. Pengoptimuman kaedah dan analisis farmaseutik dalam air kumbahan dan air sungai. Sains Malaysiana 47(5): 931-940.
Ooi, T.Y., Yong, E.L., Din, M.F.M., Rezania,
S., Aminudin, E., Chelliapan,
S., Abdul Rahman, A. & Park, J. 2018. Optimization of aluminium recovery from water treatment sludge using response surface methodology. Journal
of Environmental Management 228: 13-19.
Patel, N., Ali Khan, Md.Z., Shahane, S., Rai, D., Chauhan, D., Kant, C. &
Chaudhary, V.K. 2020. Emerging pollutants in aquatic environment: Source,
effect, and challenges in biomonitoring and bioremediation- A review. Pollution 6(1): 99-113.
Peñafiel, M.E., Matesanz, J.M., Vanegas, E., Bermejo, D. & Ormad,
M.P. 2020. Corncobs as a potentially low-cost biosorbent for sulfamethoxazole removal from aqueous solution. Separation Science and Technology (Philadelphia) 55(17): 3060-3071.
Putra, E.K., Pranowo, R., Sunarso, J., Indraswati, N. & Ismadji, S. 2009. Performance of activated carbon and
bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and
kinetics. Water Research 43(9): 2419-2430.
Rahman, M.M., Muttakin, M., Pal, A., Shafiullah, A.Z. & Saha, B.B. 2019. A statistical approach to determine optimal models for IUPAC-classified adsorption isotherms. Energies 12(23): 1-34.
Saruchi & Kumar, V. 2019. Adsorption kinetics and isotherms for
the removal of rhodamine B dye and Pb +2 ions from aqueous solutions by a hybrid
ion-exchanger. Arabian Journal of Chemistry 12(3): 316-329.
Schwindt, A.R., Winkelman, D.L., Keteles, K., Murphy, M. & Vajda,
A.M. 2014. An environmental oestrogen disrupts fish
population dynamics through direct and transgenerational effects on survival
and fecundity. Journal of Applied Ecology 51(3): 582-591.
Seo, Y.H., Lee, I.G. & Han, J.I. 2013. Cultivation and
lipid production of yeast Cryptococcus curvatus using pretreated waste active sludge
supernatant. Bioresource Technology 135: 304-308.
Shejale, K.P., Yadav, D., Patil, H., Saxena, S. & Shukla, S. 2020. Evaluation of water
remediation techniques from antibiotic contaminants using activated carbon. Molecular
Systems Design & Engineering 5(4): 743-756.
Sodiq, A.O., Oluwatosin, A.A. &
Samuel, O.O. 2017. Assessment of the impact of pharmaceutical industry
effluents quality of nearby river. International Journal of Ecological
Science and Environmental Engineering 4(6): 114-118.
Sun, Y. & Webley, P.A. 2010. Preparation of activated
carbons from corncob with large specific surface area by a variety of chemical
activators and their application in gas storage. Chemical Engineering
Journal 162(3): 883-892.
Verlicchi, P., al Aukidy, M. & Zambello, E. 2012. Occurrence of pharmaceutical compounds
in urban wastewater: Removal, Mass load and environmental risk after a
secondary treatment - A review. Science of the Total Environment 429:
123-155.
Wang, F.Y., Wang, H. & Ma, J.W. 2010. Adsorption of
cadmium (II) ions from aqueous solution by a new low-cost adsorbent-Bamboo
charcoal. Journal of Hazardous Materials 177(1-3): 300-306.
Yu, F., Li, Y., Han, S. & Ma, J. 2016. Adsorptive
removal of antibiotics from aqueous solution using carbon materials. Chemosphere 153: 365-385.
Yustiani, Y.M., Nurkanti, M., Suliasih, N. & Novantri, A.
2018. Influencing parameter of self purification process in the urban area of Cikapundung River,
Indonesia. International Journal of Geomate 14(43): 50-54.
Zhang, X.F., Wang, B., Yu, J., Wu, X.N., Zang,
Y.H., Gao, H.C., Su, P.C. & Hao, S.Q. 2018. Three-dimensional
honeycomb-like porous carbon derived from corncob for the removal of heavy
metals from water by capacitive deionization. Royal Society of Chemistry 8(3): 1159-1167.
*Corresponding author; email: nfaizah@ukm.edu.my
|