Sains Malaysiana 51(12)(2022): 3995-4008

http://doi.org/10.17576/jsm-2022-5112-10

 

Pengoptimuman Penyingkiran Sulfamethoxazole melalui Kaedah Gerak Balas Permukaan menggunakan Reka Bentuk Komposit Berpusatkan Muka

(Optimization of Sulfamethoxazole Removal by Surface Reaction Method using Face Centered Composite Design)

 

WAN YUSREENA ILYA WAN AZIZEE & NURFAIZAH ABU TAHRIM*

 

 Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received:14 March 2022/Accepted: 26 August 2022

 

Abstrak

Pencemaran disebabkan oleh sisa farmaseutik semakin membimbangkan sejak kebelakangan ini kerana ia memberi kesan buruk terutamanya kepada alam sekitar. Terdapat pelbagai kaedah yang dicadangkan oleh penyelidik untuk menyingkirkan bahan cemar tersebut. Penjerapan menggunakan karbon teraktif merupakan salah satu kaedah yang sering digunakan untuk menyingkirkan sisa farmaseutik dalam air. Untuk memperoleh peratus penyingkiran yang maksimum, pengoptimuman perlu dilakukan. Tujuan kajian ini adalah untuk mengoptimumkan parameter yang mempengaruhi penjerapan sulfamethoxazole (SMX). Pengoptimuman dilakukan melalui kaedah gerak balas permukaan (RSM) dengan reka bentuk berpusatkan muka (FCCCD). Parameter yang dikaji adalah kepekatan asal larutan SMX, dos karbon teraktif dan juga masa interaksi. Daripada analisis RSM, model kuadratik telah dibangunkan dengan nilai pekali penentuan, R2 0.9861. Berdasarkan analisis tersebut, didapati dos karbon teraktif dan masa interaksi adalah paling signifikan dalam mempengaruhi peratus penyingkiran SMX berbanding kepekatan asal larutan SMX. Keadaan optimum parameter adalah kepekatan asal larutan SMX = 6 mg/L, dos karbon teraktif = 30 mg dan masa interaksi = 78.02 minit dengan peratus penyingkiran yang dicapai adalah 99.65%. Secara keseluruhannya, hasil kajian menunjukkan bahawa keadaan optimum yang telah dicadangkan oleh RSM boleh digunakan dalam penjerapan SMX. Selain itu, proses penjerapan SMX ialah jerapan kimia dan berlaku secara berbilang lapisan pada permukaan heterogen.

 

Kata kunci: Air; kaedah gerak balas permukaan (RSM); pengoptimuman; reka bentuk komposit berpusatkan muka (FCCCD); sulfamethoxazole

 

Abstract

Pollution caused by pharmaceutical waste has become a concern these days due to its negative effect especially towards the environment. There were various kinds of methods that had been suggested by researchers to remove these contaminants. Adsorption using activated carbon was one of the most commonly used method to remove pharmaceutical waste in water. In order to obtain the maximum percentage removal, optimization need to be done. The purpose of this study was to optimize the parameters that affect the adsorption of sulfamethoxazole (SMX) in water to achieve the maximum percentage removal of SMX. The optimization was done by response surface method using face-centered central composite design (FCCCD). The parameters studied were initial concentration of SMX, activated carbon dosage and interaction time. From the RSM analysis, quadratic model was developed with the value of coefficient, R2 0.9681. Based on the analysis, the dosage of activated carbon and the time of interactions were the most significant in affecting the percentage removal of SMX compared to initial concentration of SMX. The optimum parameter conditions obtained were the initial concentration of SMX solution = 6 mg/L, activated carbon dosage = 30 mg and interaction time = 78.02 min, with a removal percentage of 99.65%. Overall, the results show that the optimum conditions suggested by RSM can be used in the adsorption of SMX. Other than that, the adsorption process of SMX were chemisorption and it occurred in multilayer on a heterogenous surface.

Keywords: Face-centered central composite design (FCCCD); optimization; response surface method (RSM); sulfamethoxazole; water

 

REFERENCES

Affam, A.C. 2020. Conventional steam activation for conversion of oil palm kernel shell biomass into activated carbon via biochar product. Global Journal of Environmental Science and Management 6(1): 15-30.

Aksoy, D.O. & Sagol, E. 2016. Application of central composite design method to coal flotation: Modelling, optimization and verification. Fuel 183: 609-616.

Ani, J.U., Okoro, U.C., Aneke, L.E., Onukwuli, O.D., Obi, I.O., Akpomie, K.G. & Ofomatah, A.C. 2019. Application of response surface methodology for optimization of dissolved solids adsorption by activated coal. Applied Water Science 9(3). DOI:10.1007/s13201-019-0943-7

Arneli, Safitri, Z.F., Pangestika, A.W., Fauziah, F., Wahyuningrum, V.W. & Astuti, Y. 2017. The influence of activating agents on the performance of rice husk-based carbon for sodium lauryl sulfate and chrome (Cr) metal adsorption. IOP Conference Series: Materials Science and Engineering 172: 012007.

Bachrun, S., Ayurizka, N., Annisa, S. & Arif, H. 2016. Preparation and characterization of activated carbon from sugarcane bagasse by physical activation with CO2 gas. IOP Conference Series: Materials Science and Engineering 105(1): 1-8.

Dastkhoon, M., Ghaedi, M., Asfaram, A., Goudarzi, A., Mohammadi, S.M. & Wang, S. 2017. Improved adsorption performance of nanostructured composite by ultrasonic wave: Optimization through response surface methodology, isotherm and kinetic studies. Ultrasonics Sonochemistry 37: 94-105.

Dias-Ferreira, C., Valente, S. & Vaz, J. 2016. Practices of pharmaceutical waste generation and discarding in households across Portugal. Waste Management and Research 34(10): 1006-1013.

Edet, U.A. & Ifelebuegu, A.O. 2020. Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste. Processes 8(6): 665.

Hassan, S.S., El-Shafie, A.S., Zaher, N. & El-Azazy, M. 2020. Application of pineapple leaves as adsorbents for removal of rose bengal from wastewater: Process optimization operating face-centered central composite design (FCCCD). Molecules 25(16): 3752.

Karimifard, S. & Alavi Moghaddam, M.R. 2018. Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review. Science of the Total Environment 640-641: 772-797.

Kashefi, S., Borghei, S.M. & Mahmoodi, N.M. 2019. Application of face-centered central composite design (FCCCD) in optimization of enzymatic decolorization of two azo dyes: A modeling vs. empirical comparison. Prog. Color Colorants Coat 12: 179-190.

Luo, Y., Li, D., Chen, Y., Sun, X., Cao, Q. & Liu, X. 2019. The performance of phosphoric acid in the preparation of activated carbon-containing phosphorus species from rice husk residue. Journal of Materials Science 54(6): 5008-5021.

Manikam, M.K., Maizatul Intan Syafinaz, Azhar, A.H. & Marlia, M.H. 2019. Penyingkiran ammonia dan permintaan oksigen kimia daripada air sisa kumbahan menggunakan media penjerap komposit karbon teraktif. Sains Malaysiana 48(11): 2529-2539.

Misran, E., Sarah, M., Irvan, Dina, S.F., Harahap, S.A.A. & Nazar, A. 2020. Activated carbon preparation from bagasse and banana stem at various impregnation ratio. Journal of Physics: Conference Series 1542(1): 1-6.

Mistar, E.M., Hasmita, I., Alfatah, T., Muslim, A. & Supardan, M.D. 2019. Adsorption of mercury(II) using activated carbon produced from Bambusa vulgaris var. Striata in a fixed-bed column. Sains Malaysiana 48(4): 719-725.

Myers, R.H., Montgomery, D.C. & Anderson-Cook, C.M. 2016. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. 4th ed. New Jersey: John Wiley & Sons.

Nor Hidayatika, A., Mohamad Azuwa, M. & Siti Fairus, M.Y. 2020. Improved adsorption performance of rubber-based hydrogel: Optimisation through response surface methodology, isotherm, and kinetic studies. Journal of Sol-Gel Science and Technology 94(2): 322-334.

Nurfaizah, A.T., Md. Pauzi, A. & Yang Farina, A.A. 2018. Pengoptimuman kaedah dan analisis farmaseutik dalam air kumbahan dan air sungai. Sains Malaysiana 47(5): 931-940.

Ooi, T.Y., Yong, E.L., Din, M.F.M., Rezania, S., Aminudin, E., Chelliapan, S., Abdul Rahman, A. & Park, J. 2018. Optimization of aluminium recovery from water treatment sludge using response surface methodology. Journal of Environmental Management 228: 13-19.

Patel, N., Ali Khan, Md.Z., Shahane, S., Rai, D., Chauhan, D., Kant, C. & Chaudhary, V.K. 2020. Emerging pollutants in aquatic environment: Source, effect, and challenges in biomonitoring and bioremediation- A review. Pollution 6(1): 99-113.

Peñafiel, M.E., Matesanz, J.M., Vanegas, E., Bermejo, D. & Ormad, M.P. 2020. Corncobs as a potentially low-cost biosorbent for sulfamethoxazole removal from aqueous solution. Separation Science and Technology (Philadelphia) 55(17): 3060-3071.

Putra, E.K., Pranowo, R., Sunarso, J., Indraswati, N. & Ismadji, S. 2009. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water Research 43(9): 2419-2430.

Rahman, M.M., Muttakin, M., Pal, A., Shafiullah, A.Z. & Saha, B.B. 2019. A statistical approach to determine optimal models for IUPAC-classified adsorption isotherms. Energies 12(23): 1-34.

Saruchi & Kumar, V. 2019. Adsorption kinetics and isotherms for the removal of rhodamine B dye and Pb +2 ions from aqueous solutions by a hybrid ion-exchanger. Arabian Journal of Chemistry 12(3): 316-329.

Schwindt, A.R., Winkelman, D.L., Keteles, K., Murphy, M. & Vajda, A.M. 2014. An environmental oestrogen disrupts fish population dynamics through direct and transgenerational effects on survival and fecundity. Journal of Applied Ecology 51(3): 582-591.

Seo, Y.H., Lee, I.G. & Han, J.I. 2013. Cultivation and lipid production of yeast Cryptococcus curvatus using pretreated waste active sludge supernatant. Bioresource Technology 135: 304-308.

Shejale, K.P., Yadav, D., Patil, H., Saxena, S. & Shukla, S. 2020. Evaluation of water remediation techniques from antibiotic contaminants using activated carbon. Molecular Systems Design & Engineering 5(4): 743-756.

Sodiq, A.O., Oluwatosin, A.A. & Samuel, O.O. 2017. Assessment of the impact of pharmaceutical industry effluents quality of nearby river. International Journal of Ecological Science and Environmental Engineering 4(6): 114-118.

Sun, Y. & Webley, P.A. 2010. Preparation of activated carbons from corncob with large specific surface area by a variety of chemical activators and their application in gas storage. Chemical Engineering Journal 162(3): 883-892.

Verlicchi, P., al Aukidy, M. & Zambello, E. 2012. Occurrence of pharmaceutical compounds in urban wastewater: Removal, Mass load and environmental risk after a secondary treatment - A review. Science of the Total Environment 429: 123-155.

Wang, F.Y., Wang, H. & Ma, J.W. 2010. Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent-Bamboo charcoal. Journal of Hazardous Materials 177(1-3): 300-306.

Yu, F., Li, Y., Han, S. & Ma, J. 2016. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere 153: 365-385.

Yustiani, Y.M., Nurkanti, M., Suliasih, N. & Novantri, A. 2018. Influencing parameter of self purification process in the urban area of Cikapundung River, Indonesia. International Journal of Geomate 14(43): 50-54.

Zhang, X.F., Wang, B., Yu, J., Wu, X.N., Zang, Y.H., Gao, H.C., Su, P.C. & Hao, S.Q. 2018. Three-dimensional honeycomb-like porous carbon derived from corncob for the removal of heavy metals from water by capacitive deionization. Royal Society of Chemistry 8(3): 1159-1167.

 

*Corresponding author; email: nfaizah@ukm.edu.my

 

 

 

 

 

previous