Sains Malaysiana 51(1)(2022): 121-136

http://doi.org/10.17576/jsm-2022-5101-10

 

Pencirian Jujukan Genom Mitokondria Spesies Rafflesia (Rafflesiaceae) di Semenanjung Malaysia

  (Characterisation of Mitochondrial Genome Sequences of Rafflesia Species (Rafflesiaceae) in Peninsular Malaysia)

 

QIONG CHIN1, MOHD-NOOR MAT-ISA1,2, MOHD-FAIZAL ABU-BAKAR2, NORFARHAN MOHD-ASSAAD3 & KIEW-LIAN WAN1*

 

1Jabatan Sains Biologi dan Bioteknologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Malaysia Genome Institute, Jalan Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia

 

3Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 8 February 2021/Accepted: 25 May 2021

 

ABSTRAK

Rafflesia terkenal sebagai tumbuhan yang menghasilkan bunga tunggal yang terbesar di dunia. Namun, ia semakin jarang ditemui dan ialah spesies dalam bahaya. Sistem pengelasan spesies Rafflesia ialah komponen penting dalam usaha pemuliharaan lazimnya bergantung kepada pencirian morfologi bunga. Walau bagaimanapun, pendekatan molekul, termasuk yang berasaskan kepada jujukan genom mitokondria (mtDNA), berupaya menyediakan kaedah pengelasan yang lebih berkesan. Untuk meneroka kemungkinan ini, jujukan mtDNA empat spesies Rafflesia di Semenanjung Malaysia, iaitu R. cantleyi, R. azlanii, R. kerrii dan R. sharifah-hapsahiae telah dihimpun dan dicirikan dalam kajian ini. Bacaan jujukan mtDNA untuk setiap spesies kajian pada mulanya telah ditentukan masing-masing daripada set data genom keseluruhan menggunakan pendekatan pemetaan berbantukan rujukan. Proses penghimpunan secara de novo dan perancahan kemudiannya telah dijalankan ke atas bacaan jujukan yang telah dikenal pasti untuk menghasilkan jujukan mtDNA bagi R. cantleyi (441,992 pb), R. azlanii (472,723 pb), R. kerrii (500,932 pb) dan R. sharifah-hapsahiae (453,747 pb). Seterusnya, anotasi mtDNA bagi setiap spesies telah mengenal pasti sekurang-kurangnya 31 gen pengekodan protein, enam gen tRNA dan tiga rRNA. Perbandingan gen mitokondria mendapati bahawa beberapa gen seperti cob, rpl10, mttB dan ccmB mempamerkan orientasi yang berbeza dalam spesies Rafflesia yang tertentu manakala analisis penjajaran jujukan berganda menunjukkan jujukan gen nad1 adalah berbeza antara keempat-empat spesies Rafflesia yang dikaji. Analisis filogenetik dengan menggunakan jujukan bagi tujuh gen pengekodan protein yang terpelihara berupaya membezakan spesies Rafflesia yang dikaji. Kesimpulannya, hasil pencirian jujukan mtDNA menunjukkan bahawa jujukan gen mitokondria yang khusus berupaya membezakan spesies Rafflesia yang dikaji dan berpotensi untuk digunakan bagi tujuan pengenalpastian serta pengelasan spesies Rafflesia dalam usaha pemuliharaan organisma yang unik ini.

 

Kata kunci: Genomik perbandingan; kepelbagaian genetik; penanda molekul; Rafflesia

 

ABSTRACT

Rafflesia is well-known as a plant that produces the largest single flower in the world. However, it is an increasingly rare and endangered species. The Rafflesia species classification system, which is an important component in conservation efforts usually depends on the morphological characterisation of the flower. However, molecular approaches, including those based on mitochondrial genome (mtDNA) sequences, may provide a more effective classification method. To explore this possibility, mtDNA sequences of four Rafflesia species in Peninsular Malaysia, namely R. cantleyi, R. azlanii, R. kerrii and R. sharifah-hapsahiae were assembled and characterised in this study. mtDNA sequencing reads for each of the four species were initially identified from their respective whole genome data sets using the reference-assisted mapping approach. De novo assembly and scaffolding processes were then carried out on the identified mtDNA sequencing reads to produce mtDNA sequences for R. cantleyi (441,992 bp), R. azlanii (472,723 bp), R. kerrii (500,932 bp) and R. sharifah-hapsahiae (453,747 bp). Subsequently, annotation of mtDNA for each species identified at least 31 protein coding, six tRNA and three rRNA genes. Comparative gene analysis showed that several genes such as cob, rpl10, mttB and ccmB display different orientation in certain Rafflesia species while multiple sequence alignment analysis showed that the nad1 gene sequence is different between the four Rafflesia species studied. Phylogenetic analysis using seven conserved protein coding gene sequences were able to differentiate the Rafflesia species studied. In conclusion, the results of mtDNA sequence characterisation indicate that specific mitochondrial gene sequences are capable of distinguishing the Rafflesia species studied, and have the potential to be used for identification and classification of Rafflesia species in efforts to conserve this unique organism.

 

Keywords: Comparative genomics; genetic diversity; molecular marker; Rafflesia

 

REFERENCES

Adam, J.H., Juhari, M.A.A., Mohamed, R., Wahad, N.A.A., Arshad, S., Kamaruzaman, M.P., Mohd Raih, M.F. & Wan, K.L. 2016. Rafflesia tuanku-halimii n. (Rafflesiaceae), a new species from Peninsular Malaysia. Sains Malaysiana 45(11): 1589-1595.

Adam, J.H., Mohamed, R., Juhari, M.A.A., Nik Ariff, N.N.F. & Wan, K.L. 2013. Rafflesia sharifah-hapsahiae (Rafflesiaceae), a new species from Peninsular Malaysia. Turkish Journal of Botany 37: 1038-1044.

Adams, K.L. & Palmer, J.D. 2003. Evolution of mitochondrial gene content: Gene loss and transfer to the nucleus. Molecular Phylogenetics and Evolution 29(3): 380-395.

Adams, K.L., Daley, D.O., Whelan, J. & Palmer, J.D. 2002a. Genes for two mitochondrial ribosomal proteins in flowering plants are derived from their choroplast or cytosolic counterparts. Plant Cell 14(4): 931-943.

Adams, K.L., Qiu, Y.L., Stoutemyer, M. & Palmer, J.D. 2002b. Punctuated evolution of mitochondrial gene content: High and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proceedings of the National Academy of Sciences of the United States of America 99(15): 9905-9912.

Alverson, A.J., Wei, X., Rice, D.W., Stern, D.B., Barry, K. & Palmer, J.D. 2010. Insights into the evolution of mitochondria genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (cucurbitaceae). Molecular Biology and Evolution 27(6): 1436-1448.

Amini, S., Rosli, K., Abu-Bakar, M.F., Alias, H., Mat-Isa, M.N., Juhari, M.A.A., Haji-Adam, J., Goh, H.H. & Wan, K.L. 2019. Transcriptome landscape of Rafflesia cantleyi floral buds reveals insights into the roles of transcription factors and phytohormones in flower development. PLoS ONE 14(12): e0226338.

Amini, S., Alias, H., Aizat-Juhari, M.A., Mat-Isa, M.N., Adam, J.H., Goh, H.H. & Wan, K.L. 2017. RNA-seq data from different developmental stages of Rafflesia cantleyi floral buds. Genomics Data 14: 5-6.

Barkman, T.J., Klooster, M.R., Gaddis, K.D., Franzone, B., Calhoun, S., Manickam, S., Vessabutr, S., Sasirat, S. & Davis, C.C. 2017. Reading between the vines: Hosts as islands for extreme holoparasitic plants. American Journal of Botany 104(9): 1382-1389.

Barkman, T.J., Bendiksby, M., Lim, S.H., Salleh, K.M., Nais, J., Madulid, D. & Schumacher, T. 2008. Accelerated rates of floral evolution at the upper size limit for flowers. Current Biology 18(19): 1508-1513.

Barkman, T.J., McNeal, J.R., Lim, S.H., Coat, G., Croom, H.B., Young, N.D. & dePamphilis, C.W. 2007. Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evolutionary Biology 7(1): 248-263.

Barkman, T.J., Lim, S.H., Salleh, K.M. & Nais, J. 2004. Mitochondrial DNA sequences reveal the photosynthetic relatives of Rafflesia, the world’s largest flower. Proceedings of the National Academy of Sciences of the United States of America 101(3): 787-792.

Bendiksby, M., Schumacher, T., Gussarova, G., Nais, J., Mat-Salleh, K., Soyanti, N., Madulid, D., Smith, S.A. & Barkman, T. 2010. Elucidating the evolutionary history of the southeast asian, holoparasitic, giant-flowered Rafflesiaceae: Pliocene vicariance, morphological convergence and character displacement. Molecular Phylogenetics and Evolution 57(2): 620-633.

Benson, D.A., Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J. & Sayers, E.W. 2015. GenBank. Nucleic Acids Research 43(D1): D30-35.

Boetzer, M., Henkel, C.V., Jansen, H.J., Butler, D. & Pirovano, W. 2010. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27(4): 578-579.

Chang, S., Wang, Y., Lu, J., Gai, J., Li, J., Chu, P., Guan, R. & Zhao, T. 2013. The mitochondrial genome of soybean reveals complex genome structures and gene evolution at intercellular and phylogenetic levels. PLoS ONE 8(6): e56502.

Chikhi, R. & Medvedev, P. 2014. Informed and automated k-mer size selection for genome assembly. Bioinformatics 30(1): 31-37.

Choi, I.S., Schwarz, E.N., Ruhlman, T.A., Khiyami, M.A., Sabir, J.S.M., Hajarah, N.H., Sabir, M.J., Rabah, S.O. & Jansen, R.K. 2019. Fluctuations in fabaceae mitochondrial genome size and content are both ancient and recent. BMC Plant Biology 19: 448.

Conant, G.C. & Wolfe, K.H. 2008. GenomeVx: Simple web-based creation of editable circular chromosome maps. Bioinformatics 24(6): 861-862.

Cox, M.P., Peterson, D.A. & Biggs, P.J. 2010. SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Genomics 11: 485.

Davis, C.C. & Wurdack, K.J. 2004. Host-to-parasite gene transfer in flowering plants: Phylogenetic evidence from Malpighiales. Science 305(5684): 676-678.

Davis, C.C., Latvis, M., Nickrent, D.L., Wurdack, K.J. & Baum, D.A. 2007. Floral gigantism in Rafflesiaceae. Science 315(5820): 1812.

Hidayati, S.N. & Walck, J.L. 2016. A review of the biology of Rafflesia: What do we know and what’s next? Buletin Kebun Raya 19(2): 67-78.

Hollingsworth, P.M., Graham, S.W. & Little, D.P. 2011. Choosing and using a plant DNA barcode. PLoS ONE 6(5): e19254.

Huang, S., Shi, Y. & Chen, M. 2020. Mitochondrial genome sequencing and phylogenetic analysis of cynodon dactylon x cynodon transvaalensis. Turkish Journal of Botany 44(1): 14-24.

Hunt, M., Newbold, C., Berriman, M. & Otto, T.D. 2014. A comprehensive evaluation of assembly scaffolding tools. Genome Biology 15(3): R42.

Khan, A.R., Pervez, M.T., Babar, M.E., Naveed, N. & Shoaib, M. 2018. A comprehensive study of de novo genome assemblers: Current challenges and future prospective. Evolutionary Bioinformatics Online 14: 1-8.

Langmead, B. & Salzberg, S.L. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9(4): 357-359.

Lee, X.W., Mat-Isa, M.N., Mohd-Elias, N.A., Aizat-Juhari, M.A., Goh, H.H., Dear, P.H., Chow, K.S., Adam, J.H., Mohamed, R., Firdaus-Raih, M. & Wan, K.L. 2016. Perigone lobe transcriptome analysis provides insights into Rafflesia cantleyi flower development. PLoS ONE 11(12): e0167958.

Lestari, D., Mahyuni, R. & Iryadi, R. 2020. Rafflesia pricei Meijer (Rafflesiaceae): A new locality in Borneo. Berita Biologi 19(2): 177-184.

Mat-Salleh, K. 2007. Magnificent Flower of Sabah: Rafflesia. Malaysia: Natural History Publications (Borneo).

Mat Yunoh, S.M. 2020. Notes on a ten-perigoned Rafflesia azlanii from the Royal Belum State Park, Perak, Peninsular Malaysia. Malayan Nature Journal 72(1): 11-17.

Molina, J., Hazzouri, K.M., Nickrent, D., Geisler, M., Meyer, R.S., Pentony, M.M., Flowers, J.M., Pelser, P., Barcelona, J., Inovejas, S.A., Uy, I., Yuan, W., Wilkins, O., Michel, C.I., Locklear, S., Concepcion, G.P. & Purugganan, M.D. 2014. Possible loss of the chloroplast genome in the parasitic flowering plant Rafflesia lagascae (Rafflesiaceae). Molecular Biology and Evolution 31(4): 793-803.

Mollier, P., Hoffmann, B., Debast, C. & Small, L. 2002. The gene encoding Arabidopsis thaliana mitochondrial ribosomal protein S13 is a recent duplication of the gene encoding plastid S13. Current Genetics 40(6): 405-409.

Nais, J. 2001. Rafflesia of the World. Malaysia: Natural History Publications (Borneo).

Ng, S.M., Lee, X.W., Mat-Isa, M.N., Aizat-Juhari, M.A., Adam, J.H., Mohamed, R., Wan, K.L. & Firdaus-Raih, M. 2018. Comparative analysis of nucleus-encoded plastid-targeting proteins in Rafflesia cantleyi against photosynthetic and non-photosynthetic representatives reveals orthologous systems with potentially divergent functions. Scientific Reports 8: 17258.

Nickrent, D.L., Blarer, A., Qiu, Y.L., Vidal-Russell, R. & Anderson, F.E. 2004. Phylogenetic inference in Rafflesiales: The influence of rate heterogeneity and horizontal gene transfer. BMC Evolutionary Biology 4(40): 40-56.

Nikolov, L.A., Endress, P.K., Sugumaran, M., Sasirat, S., Vessabutr, S., Kramer, E.M. & Davis, C.C. 2013. Developmental origins of the world’s largest flower, Rafflesiaceae. Proceedings of the National Academy of Sciences of the United States of America 110(46): 18578-18583.

Palmer, J.D., Adams, K.L., Cho, Y.R., Parkinson, C.L., Qiu, Y.L. & Song, K.M. 2000. Dynamic evolution of plant mitochondrial genomes: Mobile genes and introns and highly variable mutation rates. Proceedings of the National Academy of Sciences of the United States of America 97(13): 6960-6966.

Pelser, P.B., Nickrent, N.L., van Ee, B.W. & Barcelona, J.F. 2019. A phylogenetics and biogeographic study of Rafflesia (Rafflesiaceae) in the Philippines: Limited dispersal and high island endemism. Molecular Phylogenetics and Evolution 139: 106555.

Pichersky, E. & Gerats, T. 2011. The plant genome: An evolutionary perspective on structure and function. The Plant Journal 66: 1-3.

Rambaut, A. 2009. FigTree v1.2.2 ed. 19. http://tree.bio.ed.ac.uk/software/figtree/. Assessed on 25 Nov 2018.

Shedge, V., Davila, J., Arrieta-Montiel, M.P., Mohammed, S. & Mackenzie, S.A. 2010. Extensive rearrangement of the Arabidopsis mitochondrial genome elicits cellular conditions for thermotolerance. Plant Physiology 152(4): 1960-1970.

Sievers, F. & Higgins, D.G. 2018. Clustal omega for making accurate alignments of many protrain sequences. Protein Science 27(1): 135-145.

Simpson, J.T. 2014. Exploring genome characteristics and sequence quality without a reference. Bioinformatics 30(9): 1228-1235.

Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J.M. & Birol, I. 2009. ABySS: A parallel assembler for short read sequence data. Genome Research 19(6): 1117-1123.

Sloan, D.B., Alverson, A.J., Chuckalovcak, J.P., Wu, M., McCauley, D.E., Palmer, J.D. & Taylor, D.R. 2012. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biology 10(1): e1001241.

Sofiyanti, N. & Choong, C.Y. 2012. Morphology of ovule, seed and pollen grain of Rafflesia r. br (Rafflesiaceae). Bangladesh Journal of Plant Taxonomy 19(2): 109-117.

Sofiyanti, N., Mat-Salleh, K., Mahmud, K., Mazlan, N.Z., Hasein, M.R.A. & Burslem, D.F.R.P. 2016. Rafflesia parvimaculata (Rafflesiaceae), a new species of Rafflesia from Peninsular Malaysia. Phytotaxa 253(3): 207-213.

Stamatakis, A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9): 1312-1313.

Surveswaran, S., Gowda, V. & Sun, M. 2018. Using an integrated approach to identify cryptic species, a divergence patterns and hybrids species in asian ladies’ tresses orchids (spiranthes, orchidaceae). Molecular Phylogenetics and Evolution 124: 106-121.

Tolod, J.R., Galindon, J.M.M., Atienza, R.R., Duya, M.V., Fernando, E.S. & Ong, P.S. 2020. Flower and fruit development and life history of Rafflesia consueloae (Rafflesiaceae). Philippine Journal of Science 150(S1): 321-334.

Van de Paer, C., Bouchez, O. & Besnard, G. 2018. Prospects on the evolutionary mitogenomics of plants: A case study on the olive family (oleaceae). Molecular Ecology Resources 18(3): 407-423.

Vere, N.D., Rich, T.C.G., Trinder, S.A. & Long, C. 2015. DNA barcoding for plants. Methods in Molecular Biology 1245: 101-118.

Wicaksono, A., Mursidawati, S., Sukamto, L.A. & Silva, J.A.T.A. 2016. Rafflesia spp.: Propagation and conservation. Planta 244(2): 289-296.

Wurdack, K.J. & Davis, C.C. 2009. Malpighiales phylogenetics: Gaining ground on one of the most recalcitrant clades in the angiosperm tree of life. American Journal of Botany 96(8): 1551-1570.

Wynn, E.L. & Christensen, A.C. 2019. Repeats of unusual size in plant mitochondrial genomes: Identification, incidence and evolution. G3: Genes, Genomes, Genetics 9(2): 549-559.

Xi, Z.X., Wang, Y.G., Bradley, R.K., Sugumaran, M., Marx, C.J., Rest, J.S. & Davis, C.C. 2013. Massive mitochondrial gene transfer in a parasitic flowering plant clade. PLoS Genetics 9(2): e1003265.

Yamauchi, A. 2005. Rate of gene transfer from mitochondria to nucleus: Effects of cytoplasmic inheritance system and intensity of intracellular competition. Genetics 171(3): 1387-1396.

Zerbino, D.R. 2010. Using the Velvet de novo assembler for short-read sequencing technologies. Current Protocols in Bioinformatics 31: 1-12.

 

*Corresponding author; email: klwan@ukm.edu.my

     

 

 

previous