Sains Malaysiana 51(1)(2022): 121-136
http://doi.org/10.17576/jsm-2022-5101-10
Pencirian Jujukan Genom Mitokondria Spesies Rafflesia (Rafflesiaceae) di Semenanjung
Malaysia
(Characterisation of Mitochondrial Genome Sequences of Rafflesia Species (Rafflesiaceae) in
Peninsular Malaysia)
QIONG CHIN1, MOHD-NOOR MAT-ISA1,2,
MOHD-FAIZAL ABU-BAKAR2, NORFARHAN MOHD-ASSAAD3 &
KIEW-LIAN WAN1*
1Jabatan Sains Biologi dan Bioteknologi,
Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Malaysia Genome Institute, Jalan Bangi,
43000 Kajang, Selangor Darul Ehsan, Malaysia
3Jabatan Fizik Gunaan, Fakulti Sains dan
Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
Received: 8 February 2021/Accepted: 25 May 2021
ABSTRAK
Rafflesia terkenal sebagai tumbuhan yang menghasilkan bunga tunggal yang terbesar di dunia. Namun, ia semakin
jarang ditemui dan ialah spesies dalam bahaya. Sistem pengelasan spesies Rafflesia ialah komponen penting dalam usaha pemuliharaan lazimnya
bergantung kepada pencirian morfologi bunga. Walau bagaimanapun, pendekatan
molekul, termasuk yang berasaskan kepada jujukan genom mitokondria (mtDNA), berupaya
menyediakan kaedah pengelasan yang lebih berkesan. Untuk meneroka kemungkinan
ini, jujukan mtDNA empat spesies Rafflesia di Semenanjung Malaysia, iaitu R. cantleyi, R. azlanii, R. kerrii dan R. sharifah-hapsahiae telah dihimpun dan dicirikan dalam kajian
ini. Bacaan jujukan mtDNA untuk setiap spesies kajian pada mulanya telah
ditentukan masing-masing daripada set data genom keseluruhan menggunakan pendekatan
pemetaan berbantukan rujukan. Proses penghimpunan secara de novo dan perancahan kemudiannya telah dijalankan
ke atas bacaan jujukan yang telah dikenal pasti untuk menghasilkan jujukan
mtDNA bagi R. cantleyi (441,992 pb), R.
azlanii (472,723 pb), R. kerrii (500,932 pb) dan R. sharifah-hapsahiae (453,747 pb). Seterusnya, anotasi mtDNA
bagi setiap spesies telah mengenal pasti sekurang-kurangnya 31 gen pengekodan
protein, enam gen tRNA dan tiga rRNA. Perbandingan gen mitokondria mendapati bahawa
beberapa gen seperti cob, rpl10, mttB dan ccmB mempamerkan orientasi yang
berbeza dalam spesies Rafflesia yang tertentu
manakala analisis penjajaran jujukan berganda menunjukkan jujukan gen nad1 adalah berbeza antara keempat-empat spesies Rafflesia yang dikaji. Analisis
filogenetik dengan menggunakan jujukan bagi tujuh gen pengekodan protein yang terpelihara berupaya membezakan spesies Rafflesia yang dikaji. Kesimpulannya, hasil pencirian jujukan mtDNA menunjukkan
bahawa jujukan gen mitokondria yang khusus berupaya membezakan spesies Rafflesia yang dikaji dan berpotensi untuk digunakan
bagi tujuan pengenalpastian serta pengelasan spesies Rafflesia dalam usaha pemuliharaan organisma yang
unik ini.
Kata kunci: Genomik perbandingan;
kepelbagaian genetik; penanda molekul; Rafflesia
ABSTRACT
Rafflesia is well-known as a plant that produces the
largest single flower in the world. However, it is an increasingly rare and
endangered species. The Rafflesia species
classification system, which is an important component in conservation efforts
usually depends on the morphological characterisation of the flower. However,
molecular approaches, including those based on mitochondrial genome (mtDNA)
sequences, may provide a more effective classification method. To explore this
possibility, mtDNA sequences of four Rafflesia species in Peninsular Malaysia,
namely R. cantleyi, R. azlanii, R. kerrii and R. sharifah-hapsahiae were assembled and characterised in this study. mtDNA sequencing reads for each
of the four species were initially identified from their respective whole
genome data sets using the reference-assisted mapping approach. De novo assembly and scaffolding processes were
then carried out on the identified mtDNA sequencing reads to produce mtDNA
sequences for R. cantleyi (441,992
bp), R. azlanii (472,723 bp), R.
kerrii (500,932 bp) and R.
sharifah-hapsahiae (453,747 bp).
Subsequently, annotation of mtDNA for each species identified at least 31
protein coding, six tRNA and three rRNA genes. Comparative gene analysis
showed that several genes such as cob, rpl10, mttB and ccmB display different
orientation in certain Rafflesia species while multiple sequence alignment analysis showed that the nad1 gene
sequence is different between the four Rafflesia species studied. Phylogenetic analysis using seven conserved protein
coding gene sequences were able to differentiate the Rafflesia species studied. In conclusion, the results
of mtDNA sequence characterisation indicate that specific mitochondrial gene
sequences are capable of distinguishing the Rafflesia species studied, and have the potential to be used for identification
and classification of Rafflesia species in efforts to conserve this unique organism.
Keywords: Comparative genomics;
genetic diversity; molecular marker; Rafflesia
REFERENCES
Adam,
J.H., Juhari, M.A.A., Mohamed, R., Wahad, N.A.A., Arshad, S., Kamaruzaman,
M.P., Mohd Raih, M.F. & Wan, K.L. 2016. Rafflesia
tuanku-halimii n. (Rafflesiaceae), a new species from Peninsular Malaysia. Sains Malaysiana 45(11): 1589-1595.
Adam, J.H., Mohamed, R., Juhari, M.A.A., Nik Ariff,
N.N.F. & Wan, K.L. 2013. Rafflesia
sharifah-hapsahiae (Rafflesiaceae), a new species from Peninsular Malaysia. Turkish Journal of Botany 37:
1038-1044.
Adams, K.L. & Palmer, J.D. 2003. Evolution of
mitochondrial gene content: Gene loss and transfer to the nucleus. Molecular Phylogenetics and Evolution 29(3): 380-395.
Adams, K.L., Daley, D.O., Whelan, J. & Palmer,
J.D. 2002a. Genes for two mitochondrial ribosomal proteins in flowering plants
are derived from their choroplast or cytosolic counterparts. Plant Cell 14(4): 931-943.
Adams, K.L., Qiu, Y.L., Stoutemyer, M. & Palmer,
J.D. 2002b. Punctuated evolution of mitochondrial gene content: High and
variable rates of mitochondrial gene loss and transfer to the nucleus during
angiosperm evolution. Proceedings of the
National Academy of Sciences of the United States of America 99(15):
9905-9912.
Alverson, A.J., Wei, X., Rice, D.W., Stern, D.B.,
Barry, K. & Palmer, J.D. 2010. Insights into the evolution of mitochondria
genome size from complete sequences of Citrullus
lanatus and Cucurbita pepo (cucurbitaceae). Molecular Biology and
Evolution 27(6): 1436-1448.
Amini, S., Rosli, K., Abu-Bakar, M.F., Alias, H.,
Mat-Isa, M.N., Juhari, M.A.A., Haji-Adam, J., Goh, H.H. & Wan, K.L. 2019.
Transcriptome landscape of Rafflesia
cantleyi floral buds reveals insights into the roles of transcription
factors and phytohormones in flower development. PLoS ONE 14(12): e0226338.
Amini, S., Alias, H., Aizat-Juhari, M.A., Mat-Isa,
M.N., Adam, J.H., Goh, H.H. & Wan, K.L. 2017. RNA-seq data from different
developmental stages of Rafflesia cantleyi floral buds. Genomics Data 14: 5-6.
Barkman, T.J., Klooster, M.R., Gaddis, K.D., Franzone,
B., Calhoun, S., Manickam, S., Vessabutr, S., Sasirat, S. & Davis, C.C.
2017. Reading between the vines: Hosts as islands for extreme holoparasitic
plants. American Journal of Botany 104(9): 1382-1389.
Barkman, T.J., Bendiksby, M., Lim, S.H., Salleh, K.M.,
Nais, J., Madulid, D. & Schumacher, T. 2008. Accelerated rates of floral
evolution at the upper size limit for flowers. Current Biology 18(19): 1508-1513.
Barkman, T.J., McNeal, J.R., Lim, S.H., Coat, G.,
Croom, H.B., Young, N.D. & dePamphilis, C.W. 2007. Mitochondrial DNA
suggests at least 11 origins of parasitism in angiosperms and reveals genomic
chimerism in parasitic plants. BMC
Evolutionary Biology 7(1): 248-263.
Barkman, T.J., Lim, S.H., Salleh, K.M. & Nais, J.
2004. Mitochondrial DNA sequences reveal the photosynthetic relatives of Rafflesia, the world’s largest flower. Proceedings of the National Academy of
Sciences of the United States of America 101(3): 787-792.
Bendiksby, M., Schumacher, T., Gussarova, G., Nais,
J., Mat-Salleh, K., Soyanti, N., Madulid, D., Smith, S.A. & Barkman, T.
2010. Elucidating the evolutionary history of the southeast asian,
holoparasitic, giant-flowered Rafflesiaceae: Pliocene vicariance, morphological
convergence and character displacement. Molecular
Phylogenetics and Evolution 57(2): 620-633.
Benson, D.A., Clark, K., Karsch-Mizrachi, I., Lipman,
D.J., Ostell, J. & Sayers, E.W. 2015. GenBank. Nucleic Acids Research 43(D1): D30-35.
Boetzer, M., Henkel, C.V., Jansen, H.J., Butler, D.
& Pirovano, W. 2010. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27(4): 578-579.
Chang, S., Wang, Y., Lu, J., Gai, J., Li, J., Chu, P.,
Guan, R. & Zhao, T. 2013. The mitochondrial genome of soybean reveals
complex genome structures and gene evolution at intercellular and phylogenetic
levels. PLoS ONE 8(6): e56502.
Chikhi, R. & Medvedev, P. 2014. Informed and
automated k-mer size selection for
genome assembly. Bioinformatics 30(1):
31-37.
Choi, I.S., Schwarz, E.N., Ruhlman, T.A., Khiyami,
M.A., Sabir, J.S.M., Hajarah, N.H., Sabir, M.J., Rabah, S.O. & Jansen,
R.K. 2019. Fluctuations in fabaceae mitochondrial genome size and content
are both ancient and recent. BMC
Plant Biology 19: 448.
Conant, G.C. & Wolfe, K.H. 2008. GenomeVx: Simple
web-based creation of editable circular chromosome maps. Bioinformatics 24(6): 861-862.
Cox, M.P., Peterson, D.A. & Biggs, P.J. 2010.
SolexaQA: At-a-glance quality assessment of Illumina second-generation
sequencing data. BMC Genomics 11:
485.
Davis, C.C. & Wurdack, K.J. 2004. Host-to-parasite
gene transfer in flowering plants: Phylogenetic evidence from Malpighiales. Science 305(5684): 676-678.
Davis, C.C., Latvis, M., Nickrent, D.L., Wurdack, K.J.
& Baum, D.A. 2007. Floral gigantism in Rafflesiaceae. Science 315(5820): 1812.
Hidayati, S.N. & Walck, J.L. 2016. A review of the
biology of Rafflesia: What do we know
and what’s next? Buletin Kebun Raya 19(2): 67-78.
Hollingsworth, P.M., Graham, S.W. & Little, D.P.
2011. Choosing and using a plant DNA barcode. PLoS ONE 6(5): e19254.
Huang, S., Shi, Y. & Chen, M. 2020. Mitochondrial
genome sequencing and phylogenetic analysis of cynodon dactylon x cynodon
transvaalensis. Turkish Journal of Botany 44(1): 14-24.
Hunt, M., Newbold, C., Berriman, M. & Otto, T.D.
2014. A comprehensive evaluation of assembly scaffolding tools. Genome Biology 15(3): R42.
Khan, A.R., Pervez, M.T., Babar, M.E., Naveed, N.
& Shoaib, M. 2018. A comprehensive study of de novo genome assemblers: Current challenges and future
prospective. Evolutionary Bioinformatics
Online 14: 1-8.
Langmead, B. & Salzberg, S.L. 2012. Fast
gapped-read alignment with Bowtie 2. Nature
Methods 9(4): 357-359.
Lee, X.W., Mat-Isa, M.N., Mohd-Elias, N.A., Aizat-Juhari,
M.A., Goh, H.H., Dear, P.H., Chow, K.S., Adam, J.H., Mohamed, R., Firdaus-Raih,
M. & Wan, K.L. 2016. Perigone lobe transcriptome analysis provides insights
into Rafflesia cantleyi flower
development. PLoS ONE 11(12):
e0167958.
Lestari, D., Mahyuni, R. & Iryadi, R. 2020. Rafflesia pricei Meijer (Rafflesiaceae):
A new locality in Borneo. Berita Biologi 19(2): 177-184.
Mat-Salleh, K. 2007. Magnificent Flower of Sabah: Rafflesia. Malaysia: Natural History
Publications (Borneo).
Mat Yunoh, S.M. 2020. Notes on a ten-perigoned Rafflesia azlanii from the Royal Belum
State Park, Perak, Peninsular Malaysia. Malayan
Nature Journal 72(1): 11-17.
Molina, J., Hazzouri, K.M., Nickrent, D., Geisler, M.,
Meyer, R.S., Pentony, M.M., Flowers, J.M., Pelser, P., Barcelona, J., Inovejas,
S.A., Uy, I., Yuan, W., Wilkins, O., Michel, C.I., Locklear, S., Concepcion,
G.P. & Purugganan, M.D. 2014. Possible loss of the chloroplast genome in
the parasitic flowering plant Rafflesia
lagascae (Rafflesiaceae). Molecular
Biology and Evolution 31(4): 793-803.
Mollier, P., Hoffmann, B., Debast, C. & Small, L.
2002. The gene encoding Arabidopsis
thaliana mitochondrial ribosomal protein S13 is a recent duplication of the
gene encoding plastid S13. Current
Genetics 40(6): 405-409.
Nais, J. 2001. Rafflesia
of the World. Malaysia: Natural History Publications (Borneo).
Ng, S.M., Lee, X.W., Mat-Isa, M.N., Aizat-Juhari,
M.A., Adam, J.H., Mohamed, R., Wan, K.L. & Firdaus-Raih, M. 2018.
Comparative analysis of nucleus-encoded plastid-targeting proteins in Rafflesia cantleyi against
photosynthetic and non-photosynthetic representatives reveals orthologous
systems with potentially divergent functions. Scientific Reports 8: 17258.
Nickrent, D.L., Blarer, A., Qiu, Y.L., Vidal-Russell,
R. & Anderson, F.E. 2004. Phylogenetic inference in Rafflesiales: The influence of rate heterogeneity and horizontal
gene transfer. BMC Evolutionary Biology 4(40): 40-56.
Nikolov, L.A., Endress, P.K., Sugumaran, M., Sasirat,
S., Vessabutr, S., Kramer, E.M. & Davis, C.C. 2013. Developmental origins
of the world’s largest flower, Rafflesiaceae. Proceedings of the National Academy of Sciences of the United States of
America 110(46): 18578-18583.
Palmer, J.D., Adams, K.L., Cho, Y.R., Parkinson, C.L.,
Qiu, Y.L. & Song, K.M. 2000. Dynamic evolution of plant mitochondrial
genomes: Mobile genes and introns and highly variable mutation rates. Proceedings of the National Academy of
Sciences of the United States of America 97(13): 6960-6966.
Pelser, P.B., Nickrent, N.L., van Ee, B.W. &
Barcelona, J.F. 2019. A phylogenetics and biogeographic study of Rafflesia (Rafflesiaceae) in the
Philippines: Limited dispersal and high island endemism. Molecular Phylogenetics and Evolution 139: 106555.
Pichersky, E. & Gerats, T. 2011. The plant genome:
An evolutionary perspective on structure and function. The Plant Journal 66: 1-3.
Rambaut, A. 2009. FigTree
v1.2.2 ed. 19. http://tree.bio.ed.ac.uk/software/figtree/.
Assessed on 25 Nov 2018.
Shedge, V., Davila, J., Arrieta-Montiel, M.P.,
Mohammed, S. & Mackenzie, S.A. 2010. Extensive rearrangement of the Arabidopsis mitochondrial genome elicits
cellular conditions for thermotolerance. Plant
Physiology 152(4): 1960-1970.
Sievers, F. & Higgins, D.G. 2018. Clustal omega
for making accurate alignments of many protrain sequences. Protein Science 27(1): 135-145.
Simpson, J.T. 2014. Exploring genome characteristics
and sequence quality without a reference. Bioinformatics 30(9): 1228-1235.
Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E.,
Jones, S.J.M. & Birol, I. 2009. ABySS: A parallel assembler for short read
sequence data. Genome Research 19(6): 1117-1123.
Sloan, D.B., Alverson, A.J., Chuckalovcak, J.P., Wu,
M., McCauley, D.E., Palmer, J.D. & Taylor, D.R. 2012. Rapid evolution of
enormous, multichromosomal genomes in flowering plant mitochondria with
exceptionally high mutation rates. PLoS
Biology 10(1): e1001241.
Sofiyanti, N. & Choong, C.Y. 2012. Morphology of
ovule, seed and pollen grain of Rafflesia r. br (Rafflesiaceae). Bangladesh Journal
of Plant Taxonomy 19(2): 109-117.
Sofiyanti, N., Mat-Salleh, K., Mahmud, K., Mazlan,
N.Z., Hasein, M.R.A. & Burslem, D.F.R.P. 2016. Rafflesia parvimaculata (Rafflesiaceae), a new species of Rafflesia from Peninsular Malaysia. Phytotaxa 253(3): 207-213.
Stamatakis, A. 2014. RAxML version 8: A tool for
phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9): 1312-1313.
Surveswaran, S., Gowda, V. & Sun, M. 2018. Using
an integrated approach to identify cryptic species, a divergence patterns and
hybrids species in asian ladies’ tresses orchids (spiranthes, orchidaceae). Molecular
Phylogenetics and Evolution 124: 106-121.
Tolod, J.R., Galindon, J.M.M., Atienza, R.R., Duya,
M.V., Fernando, E.S. & Ong, P.S. 2020. Flower and fruit development and
life history of Rafflesia consueloae
(Rafflesiaceae). Philippine Journal of
Science 150(S1): 321-334.
Van de Paer, C., Bouchez, O. & Besnard, G. 2018.
Prospects on the evolutionary mitogenomics of plants: A case study on the olive
family (oleaceae). Molecular Ecology
Resources 18(3): 407-423.
Vere, N.D., Rich, T.C.G., Trinder, S.A. & Long, C.
2015. DNA barcoding for plants. Methods
in Molecular Biology 1245: 101-118.
Wicaksono, A., Mursidawati, S., Sukamto, L.A. &
Silva, J.A.T.A. 2016. Rafflesia spp.:
Propagation and conservation. Planta 244(2):
289-296.
Wurdack, K.J. & Davis, C.C. 2009. Malpighiales
phylogenetics: Gaining ground on one of the most recalcitrant clades in the
angiosperm tree of life. American Journal
of Botany 96(8): 1551-1570.
Wynn, E.L. & Christensen, A.C. 2019. Repeats of
unusual size in plant mitochondrial genomes: Identification, incidence and
evolution. G3: Genes, Genomes, Genetics 9(2): 549-559.
Xi, Z.X., Wang, Y.G., Bradley, R.K., Sugumaran, M.,
Marx, C.J., Rest, J.S. & Davis, C.C. 2013. Massive mitochondrial gene
transfer in a parasitic flowering plant clade. PLoS Genetics 9(2): e1003265.
Yamauchi, A. 2005. Rate of gene transfer from
mitochondria to nucleus: Effects of cytoplasmic inheritance system and
intensity of intracellular competition. Genetics 171(3): 1387-1396.
Zerbino, D.R. 2010. Using the Velvet de novo assembler for short-read sequencing
technologies. Current Protocols in
Bioinformatics 31: 1-12.
*Corresponding author; email:
klwan@ukm.edu.my
|