Sains Malaysiana 51(1)(2022): 137-147
http://doi.org/10.17576/jsm-2022-5101-11
Catalytic Degradation of
Chlorinated Lignin in Pulp Bleaching Wastewater over Immobilized Laccase
(Degradasi Katalitik Lignin Berklorin dalam Air
Buangan Pelunturan Pulpa pada Lakase Pegun)
XUE-FEI
ZHOU1,2,3*
1Henan Key Laboratory of Industrial Microbial Resources
and Fermentation Technology, Nanyang Institute of Technology, 473000 Nanyang,
China
2Fujian Provincial Key Lab of Coastal Basin
Environment, Fujian Polytechnic Normal University, Fujian Province University,
350300 Fuzhou, China
3Faculty of Chemical Engineering, Kunming
University of Science and Technology, 650500 Kunming, China
Received: 9 January 2021/Accepted: 22 April 2021
ABSTRACT
The
aim of this study was to use molecular sieves (NaY, MCM-48, SSZ-13) and graphene oxide (GO) as supports to immobilize
laccase to increase its activity and stability. A series of characterization of
immobilized laccases against kinetic parameter and stability were carried out,
and it was showed that the GO-immobilized laccase (Lac/GO) was better than
molecular sieve-immobilized laccases (Lac/NaY, Lac/MCM, Lac/SSZ) in terms of
activity and stability test using ABTS
(2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) as substrate. The
impacts of enzymatic catalysis on degradation of chlorinated lignin from pulp
bleaching wastewater were studied through the structural characterization with 31P-NMR.
Lac/GO was able to perform the most extensive oxidation of the chlorinated
lignin, as demonstrated by the increase of carboxyl groups and the decrease of
aliphatic hydroxyl groups. Noteworthy, significant degradation of condensed
lignin substructures occurred during Lac/GO catalyzed oxidation of chlorinated
lignin was observed, while the content of phenolic hydroxyl groups of
chlorinated lignin substantially increased due to the cleavage of β-O-4 bonds compared to molecular sieve-immobilized laccases. It
was also proved that catalytic degradation using Lac/GO as a biocatalyst is the
effective method to reduce pollution load of pulp bleaching wastewater. The
maximum degradation of chlorinated lignin in pulp bleaching wastewater was
achieved with the degradation rate of chlorinated lignin of 88.6% at 5.0 g/L
Lac/GO dose, 50 °C, 4 h, pH 5.0. The removal of COD, TOC, and colour was 86.2, 85.8 and 92.2%, respectively.
Keywords: Biocatalysis;
chlorinated lignin; degradation; laccase; pulp bleaching wastewater
ABSTRAK
Tujuan kajian ini adalah
untuk menggunakan saringan molekul (NaY, MCM-48, SSZ-13) dan grafin teroksida
(GO) sebagai sokongan terhadap lakase pegun untuk meningkatkan aktiviti dan
kestabilan. Beberapa pencirian kepada lakase pegun terhadap parameter
kinetik dan kestabilan telah dijalankan dan keputusan pencirian menunjukkan
bahawa GO - lakase pegun (Lac/GO) adalah lebih baik jika dibandingkan dengan
saringan molekul - lakase pegun (Lac/NaY, Lac/MCM, Lac/SSZ) dari segi ujian
aktiviti dan kestabilan menggunakan ABTS
(2,2’-azino-bis(3-ethylbenzothiazoline-6-asid sulfonik)) sebagai substrat.
Kesan daripada pemangkinan enzim pada degradasi lignin berklorin daripada air
buangan pelunturan pulpa telah dikaji melalui pencirian struktur menggunakan 31P-NMR.
Lac/GO dapat membuat proses pengoksidaan yang paling ekstensif untuk lignin
berklorin, seperti yang ditunjukkan daripada peningkatan kumpulan karboksil dan
pengurangan kumpulan hidroksil alifatik. Degradasi bererti daripada substruktur
lignin mampat telah berlaku ketika pemangkinan pengoksidaan Lac/GO daripada
lignin berklorin telah diperhatikan, manakala kandungan kumpulan hidroksil
fenol daripada lignin berklorin telah meningkat secara mendadak disebabkan
pembelahan ikatan β-O-4 jika dibandingkan dengan penggunaan saringan
molekul - lakase pegun. Kajian ini juga membuktikan bahawa degradasi
pemangkinan menggunakan Lac/GO sebagai katalisis biopemangkin merupakan kaedah
yang berkesan untuk menurunkan pencemaran yang disebabkan daripada air buangan pelunturan
pulpa. Degradasi maksimum lignin berklorin dalam air buangan pelunturan pulpa
telah dicapai dengan kadar degradasi lignin berklorin pada 88.6% pada dos 5.0
g/L Lac/GO, 50 °C, 4 jam, pH 5.0. Penyingkiran COD, TOC dan warna masing-masing
adalah 86.2, 85.8 dan 92.2%.
Kata kunci: Air buangan
pelunturan pulpa; biopemangkin; degradasi; lakase; lignin berklorin
REFERENCES
Author, kindly assist to provide details for the following references.
Thank you. Oliveira et al. 2009, Singh & Gupta 2020.
Abedinzadeh, N., Shariat, M., Monavari,
S.M. & Pendashteh, A. 2018. Evaluation of color and COD removal by Fenton
from biologically (SBR) pre-treated pulp and paper wastewater. Process
Safety and Environmental Protection 116: 82-91.
Afreen, S., Idrees, D., Khera, R., Amir,
M., Hassan, M.I. & Mishra, S. 2019. Investigation of the role of central
metal ion of Cyathus bulleri laccase
1 using guanidinium chloride-induced denaturation. International Journal of Biological Macromolecules 132: 994-1000.
Aggarwal, S., Chakravarty, A. & Ikram, S. 2020. A
comprehensive review on incredible renewable carriers as promising platforms
for enzyme immobilization & thereof strategies. International Journal of Biological Macromolecules 167: 962-986.
APHA. 2017. Standard Methods for the Examination of
Water and Wastewater. American Public Health Association (APHA).
Asgher, M., Wahab, A., Bilal, M. & Iqbal, H.M.N. 2018.
Delignification of lignocellulose biomasses by algnate-chitosan immobilized
laccase produced from Trametes versicolor IBL-04. Waste and Biomass Valorization 9(11): 2071-2079.
Balakshin, M. & Capanema, E. 2015. On the quantification of lignin hydroxyl groups with P-31
and C-13 NMR spectroscopy. Journal of
Wood Chemistry and Technology 35(3): 220-237.
Bari,
E., Daniel,
G., Yilgor,
N., Kim,
J.S., Tajick-Ghanbary,
M.A., Singh,
A.P. & Ribera,
J. 2020. Comparison
of the decay behavior of two white-rot fungi in relation to wood type and
exposure conditions. Microorganisms 8(12): 1931.
Buntic, A.V., Milic, M.D., Antonovic, D.G., Siler-Marinkovic, S. & Dimitrijevic-Brankovic, S.I. 2019. Implementation of integrated adsorption and biological
process in wastewater treatment for permanent dye removal and its subsequent
decontamination. Desalination and Water
Treatment 169: 372-382.
Chaparro,
T.R. & Rueda-Bayona,
J.G. 2020.
Ecotoxicity and genetic toxicity data from a pulp mill bleaching effluent
treated with anaerobic digestion and advanced oxidation process (AOP). Data in Brief 29: 105141.
Dube,
M.G. & MacLatchy,
D.L. 2000.
Endocrine responses of Fundulus
heteroclitus to effluent from a bleached-kraft pulp mill before and after
installation of reverse osmosis treatment of a waste stream. Environmental Toxicology and Chemistry 19(11): 2788-2796.
Faleva, A.V., Kozhevnikov, A.Y., Pokryshkin, S.A., Falev, D.I., Shestakov, S.L. & Popova, J.A. 2020. Structural characteristics of different softwood lignins
according to 1D and 2D NMR spectroscopy. Journal
of Wood Chemistry and Technology 40(3): 178-189.
Fernandez-Rodriguez, J., Erdocia, X., Sanchez, C., Alriols, M.G. & Labidi, J. 2017. Lignin depolymerization for phenolic monomers production
by sustainable processes. Journal of
Energy Chemistry 26(4): 622-631.
Haq, I., Mazumder, P. & Kalamdhad, A.S. 2020. Recent advances in removal of lignin from paper industry
wastewater and its industrial applications - A review. Bioresource Technology 312: 123636.
Hita, I., Heeres, H.J. & Deuss, P.J. 2018.
Insight into structure-reactivity relationships for the iron-catalyzed
hydrotreatment of technical lignins. Bioresource
Technology 267: 93-101.
Iakunkov, A. & Talyzin, A.V. 2020. Swelling properties of graphite
oxides and graphene oxide multilayered materials. Nanoscale 12(41):
21060-21093.
Ivanka, S., Albert, K. & Veselin, S. 2010. Properties of crude
laccase from Trametes versicolor produced
by solid-substrate fermentation. Advances
in Bioscience and Biotechnology 1(3): 208-215.
Jiang, W.K., Wu, S.B., Lucia, L.A. & Chu, J.Y. 2017. Effect of side-chain structure on hydrothermolysis of
lignin model compounds. Fuel Processing
Technology 166: 124-130.
Kamali, M., Suhas, D.P., Costa, M.E., Capela, I. & Aminabhavi,
T.M. 2019. Sustainability considerations in membrane-based technologies for
industrial effluents treatment. Chemical
Engineering Journal 368: 474-494.
Kashefi,
S., Borghei,
S.M. & Mahmoodi,
N.M. 2019a.
Covalently immobilized laccase onto graphene oxide nanosheets: Preparation,
characterization, and biodegradation of azo dyes in colored wastewater. Journal of Molecular Liquids 276:
153-162.
Kashefi, S., Borghei, S.M. & Mahmoodi, N.M. 2019b. Superparamagnetic enzyme-graphene oxide magnetic
nanocomposite as an environmentally friendly biocatalyst: Synthesis and
biodegradation of dye using response surface methodology. Microchemical Journal 145: 547-558.
Khabiri, B., Ferdowsi, M., Buelna, G., Jones, J.P. & Heitz, M. 2020. Simultaneous
biodegradation of methane and styrene in biofilters packed with inorganic
supports: Experimental and macrokinetic study. Chemosphere 252: 126492.
Kołodziejczak-Radzimska, A., Budna,
A., Ciesielczyk, F., Moszyński, D. & Jesionowski, T. 2020. Laccase
from Trametes versicolor supported
onto mesoporous Al2O3: Stability tests and evaluations of catalytic activity. Process Biochemistry 95: 71-80.
Lambert, E., Aguié-Béghin, V., Dessaint,
D., Foulon, L., Chabbert, B., Paës, G. & Molinari, M. 2019. Real time and
quantitative imaging of
lignocellulosic films hydrolysis by atomic force microscopy reveals lignin
recalcitrance at nanoscale. Biomacromolecules 20(1):
515-527.
Liu, Y. & Wang, Z.
2014. Immobilization of laccase on surface modified magnetic silica particles
and its use for the papermaking wastewater. Applied
Mechanics & Materials 670-671: 267-270.
Mainardis, M., Buttazzoni, M., De, B.N., Mion, M. & Goi, D. 2020. Evaluation of ozonation applicability to pulp and paper
streams for a sustainable wastewater treatment. Journal of Cleaner Production 258: 120781.
Mahmoodi, N.M. & Saffar-Dastgerdi, M.H. 2020. Clean laccase immobilized nanobiocatalysts (graphene oxide
- zeolite nanocomposites): From production to detailed biocatalytic degradation
of organic pollutant. Applied Catalysis
B-Environmental 268: 118443.
Mukundan, S., Melo, J.S., Sen, D. & Bahadur, J. 2020 Enhancement in beta-galactosidase activity of Streptococcus
lactis cells by entrapping in microcapsules comprising of correlated silica
nanoparticles. Colloids and Surfaces B,
Biointerfaces 195: 111245.
Naseri, M., Pitzalis, F., Carucci, C., Medda, L., Fotouhi, L., Magner, E. & Salis, A. 2018. Lipase and laccase encapsulated on zeolite imidazolate
framework: Enzyme activity and stability from voltammetric measurements. ChemCatChem 10(23): 5425-5433.
Pang, R., Li, M.Z. & Zhang, C.D. 2015. Degradation of phenolic compounds by laccase immobilized
on carbon nanomaterials: Diffusional limitation investigation. Talanta 131: 38-45.
Samak,
N.A., Tan,
Y.Q., Sui,
K.Y., Xia,
T.T., Wang,
K.F., Guo,
C. & Liu,
C.Z. 2018. CotA laccase
immobilized on functionalized magnetic graphene oxide nano-sheets for efficient
biocatalysis. Molecular Catalysis 445: 269-278.
Singh, D. & Gupta, N. 2020. Microbial
laccase: A robust enzyme and its industrial applications. Biologia 75(8): 1183-1193.
Tisma, M., Salic, A., Planinic, M., Zelic, B., Potocnik, M., Selo, G. & Bucic-Kojic, A. 2020. Production, characterisation and immobilization of laccase
for an efficient aniline -based dye decolourization. Journal of Water Process Engineering 36: 101327.
Wang, X., Li, X. & Li, Y. 2007. A modified Coomassie Brilliant Blue staining method at
nanogram sensitivity compatible with proteomic analysis. Biotechnology
Letters 29: 1599-1603.
Yun, K.I. & Han, T.S. 2020. Relationship between enzyme concentration and Michaelis
constant in enzyme assays. Biochimie 176: 12-20.
Zdarta, J., Jankowska, K., Wyszowska, M., Kijenska-Gawronska, E., Zgala-Grzeskowiak, A., Pinelo, M., Meyer, A.S., Moszynski, D. & Jesionowski, T. 2019. Robust biodegradation of naproxen and diclofenac by
laccase immobilized using electrospun nanofibers with enhanced stability and
reusability. Materials Science &
Engineering C-Materials for Biological Applications 103: 109789.
Zhang, J., Han, X.L., Jiang, B., Qiu, X.F. & Gao, B.Y. 2010. A hybrid system combining self-forming dynamic membrane
bioreactor with coagulation process for advanced treatment of bleaching
effluent from straw pulping process. Desalination
and Water Treatment 18(1-3): 212-216.
Zhang, S.T., Wu, Z.F., Chen, G. & Wang, Z. 2018. An improved method to encapsulate laccase from Trametes versicolor with enhanced stability and catalytic activity. Catalysts 8(7): 286.
Zhao, L.H., Ma, Q.Q., Nie, F., Chen, W. & Sun, H.J. 2018. Increasing laccase activity of white rot fungi by
mutagenesis and treating papermaking wastewater. In IOP Conference Series: Earth and Environmental Science. IOP.
012053.
*Corresponding author; email: lgdx602@sina.com
|