Sains Malaysiana 51(1)(2022): 39-50
http://doi.org/10.17576/jsm-2022-5101-04
Population
Structure of Indian Mackerel (Rastrelliger
kanagurta) in Java and Bali Island, Indonesia Inferred from Otolith Shape
(Struktur
Populasi Ikan Borek India (Rastrelliger
kanagurta) di Jawa dan Kepulauan Bali, Indonesia diperoleh daripada Bentuk
Otolit)
ARIEF WUJDI1,2*, HAN JU KIM3 &
CHUL WOONG OH3
1International Graduate Program of Fisheries Science, Pukyong
National University, Busan, 48513 South Korea
2Research Institute for Tuna Fisheries, Denpasar, Bali, 80223
Indonesia
3Department of Marine Biology, Pukyong National University,
Busan, 48513 South Korea
Received: 12 January 2021/Accepted:
16 May 2021
ABSTRACT
The Indian mackerel, Rastrelliger kanagurta, is a commercially
important resource across Indonesia's archipelagic waters. Despite its
essential role in the fisheries industry, information regarding its population
structures for management purposes is still limited. The present study
investigates the variability of otolith shape as an efficient tool for stock
discrimination. A total of 159 pairs of sagittal otolith were sampled at four
localities along the southern Java-Bali coastal waters. Otolith outline was
modeled by using Wavelet coefficients and was compared between localities using
ANOVA-like permutation test, Canonical Analysis of Principal Coordinates (CAP),
and classification test performed using linear discriminant analysis. The
results showed significant differences in the shape of otolith between
populations, reflected explicitly in the morphological feature of the
excisura major. The differences in otolith shape were examined from all
localities (ANOVA-like, p<0.001, and CAP p>0.05), except those otoliths
between Palabuhanratu and Pacitan, thus, a mixed stock may occur in these
two locations. These findings were also confirmed by the low classification success rate
using LDA 44.26%. These results suggested that at least two
distinct stocks potentially contributed to the fishery, impacting species management and conservation.
Keywords: Otolith morphology; Rastrelliger
kanagurta; shapeR; stock identification;
Wavelet transformation
ABSTRAK
Ikan borek India, Rastrelliger
kanagurta, adalah sumber ikan komersial
yang penting di seluruh perairan kepulauan Indonesia. Walaupun mempunyai
kepentingan ekonomi yang tinggi dalam industri perikanan, maklumat struktur
populasinya untuk tujuan pengurusan masih terhad. Penyelidikan ini mengkaji kebolehubahan
bentuk otolit sebagai kaedah yang cekap untuk menilai struktur stok ikan.
Sebanyak 159 pasang sagital otolit diambil dari empat kawasan di sepanjang
perairan pantai selatan Jawa dan Bali. Garis besar otolit dimodelkan
menggunakan pekali Wavelet dan dibandingkan antara lokasi dengan ujian ANOVA
dengan permutasi, Analisis Kanonikal Koordinat Utama (CAP) dan pengelompokan
dilakukan dengan menggunakan analisis diskriminan linear. Hasil kajian
menunjukkan bahawa terdapat perbezaan yang signifikan dalam bentuk otolith
antara populasi, terutama dalam pencirian morfologi pada bahagian eksikura
major. Perbezaan signifikan diperoleh untuk bentuk otolit dari semua kawasan
(ANOVA p<0.001 dan CAP p>0.05), kecuali otolit antara Palabuhanratu dan
Pacitan. Ini mungkin disebabkan oleh terdapat stok campuran yang berlaku di
kawasan tersebut. Penemuan ini juga disahkan oleh kadar kejayaan pengelasan
yang rendah menggunakan LDA 44.26%. Hasil ini menunjukkan bahawa
sekurang-kurangnya dua stok berbeza berpotensi menyumbang kepada perikanan yang
dapat memberi implikasi kepada pengurusan dan pemuliharaan spesies ikan ini.
.
Kata kunci: BentukR; morfologi otolit;
pengenalpastian stok; penjelmaan Wavelet; Rastrelliger
kanagurta
REFERENCES
Amri, K., Suman, A., Irianto, H.E.
& Wudianto. 2015. Effects of dipole mode and el-nino events on catches of
yellowfin tuna (Thunnus albacares) in
the eastern Indian Ocean off west Java. Indonesian
Fisheries Research Journal 21(2): 75-90.
Anderson, M.J. & Willis, T.J.
2003. Canonical analysis of principal coordinates: A useful method of
constrained ordination for ecology. Ecology 84(2): 511-525.
Arrafi, M., Azmi, A.M., Piah, R.M.
& Muchlisin, Z.A. 2016. Biology of Indian mackerel, Rastrelliger kanagurta (Cuvier, 1817) in the western waters of
Aceh. Iranian Journal of Fisheries Science 15(3): 957-972.
Bani, A., Poursaeid, S. & Tuset,
V.M. 2013. Comparative morphology of the sagittal otolith in three species of
south Caspian gobies. Journal of Fish
Biology 82(4): 1321-1332.
Barton, D.P., Taillebois, L.,
Taylor, J., Crook, D.A., Saunders, T., Hearnden, M., Greig, A., Welch, D.J.,
Newman, S.J., Travers, M.J., Saunders, R.J., Errity, C., Maher, S., Dudgeon, C.
& Ovenden, J. 2018. Stock structure of Lethrinus
laticaudis (Lethrinidae) across northern Australia determined using
genetics, otolith microchemistry and parasite assemblage composition. Marine and Freshwater Research 69(4):
487-501.
Brophy, D., Haynes, P.,
Arrizabalaga, H., Fraile, I., Fromentin, J.M., Garibaldi, F., Katavic, I.,
Tinti, F., Karakulak, F.S., Macias, D., Busawon, D., Hanke, A., Kimoto, A.,
Sakai, O., Deguara, S., Abid, N. & Santos, M.N. 2016. Otolith shape
variation provides a marker of stock origin for north Atlantic bluefin tuna (Thunnus thynnus). Marine and Freshwater Research 67(7): 1023-1036.
Campana, S.E. 1999. Chemistry and
composition of fish otoliths: Pathways, mechanisms and applications. Marine Ecology Progress Series 188:
263-297.
Campana, S.E. & Casselman, J.M.
1993. Stock discrimination using otolith shape analysis. Canadian Journal of Fisheries and Aquatic Sciences 50(5):
1062-1083.
Campana, S.E. & Neilson, J.D.
1985. Microstructure of fish otoliths. Canadian
Journal of Fisheries and Aquatic Sciences 42(5): 1014-1032.
Cardinale,
M., Doering-Arjes, P., Kastowsky, M. & Mosegaard, H. 2004. Effects of
sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Canadian Journal of Fisheries and Aquatic
Sciences 61(2): 158-167.
Christensen, H.T., Riget, F., Backe,
M.B., Saha, A., Johansen, T. & Hedeholm, R.B. 2018. Comparison of three
methods for identification of redfish (Sebastes
mentella and S. norvegicus) from
the Greenland east coast. Fisheries
Research 201(1): 11-17.
Collette, B.B. & Nauen, C.E. 1983. FAO Species Catalogue Vol. 2 Scombrids of
the World: An Annotated and Illustrated Catalogue of Tunas, Mackerels, Bonitos
and Related Species Know to Date. FAO Fisheries Synopsis 2 (125). Rome:
FAO.
Das, I., Hazra, S., Bhattacharya,
S., Das, S. & Giri, S. 2016. A study on seasonal change in feeding habit,
health status and reproductive biology of Indian Mackerel (Rastrelliger kanagurta, Cuvier) in coastal water of West Bengal. Indian Journal of Geo-Marine Sciences 45
(2): 254-260.
Directorate General of Capture
Fisheries. 2017. Statistic Data of
Capture Fisheries. Jakarta: Directorate General of Capture Fisheries,
Ministry of Marine Affair and Fisheries.
Gencay, R., Selcuk, F.
&Whitcher, B. 2001. Differentiating intraday seasonalities through wavelet
multi-scaling. Physica A 289(3-4):
543-556.
Hariati, T. & Fauzi, M. 2011.
Reproductive aspects of Indian mackerel Rastrelliger
kanagurta (Cuv. 1817) of northern Aceh waters. Jurnal Iktiologi Indonesia 11(1): 47-53 (In Bahasa Indonesia).
Hendiarti, N., Suwarso, Aldrian, E.,
Amri, K., Andiastuti, R., Sachoemar, S. & Wahyono, I.B. 2005. Seasonal
variation of pelagic fish catch around Java. Oceanography 18(4): 112-123.
Hendiarti, N., Siegel, H. &
Ohde, T. 2004. Investigation of different coastal processes in Indonesian water
using SeaWiFS data. Deep Sea Research
Part II: Topical Studies in Oceanography 51(1-3): 85-97.
Hulkoti, S.H., Shivaprakash, S.M.,
Anjanayappa, H.N., Somashekara, S.R., Benakappa, S., Naik, A.S.K., Prasad, L.G.
& Kumar, J. 2013. Food and feeding habits of mackerel Rastrelling kanagurta (Cuvier) from Mangalore Region. Environment and Ecology 31 (2A):
672-675.
Hüssy, K., Mosegaard, H., Albertsen,
C.M., Nielsen, E.E., Hansen, J.H. & Eero, M.
2016. Evaluation of otolith shape as a tool for stock discrimination in marine
fishes using Baltic Sea cod as a case study. Fisheries Research 174: 210-218.
Ilahude, A.G. 1975. Seasonal
features of the hydrology of the Bali Strait. Marine Research of Indonesia 15: 37-73.
Kishida, M., Kanaji, Y., Xie, S.,
Watanabe, Y., Kawamura, T., Masuda, R. & Yamashita Y. 2011.
Ecomorphological dimorphism of juvenile Trachurus
japonicus in Wakasa Bay, Japan. Environmental
Biology of Fishes 90(3): 301-315.
Kunarso, Hadi, S., Ningsih, N.S.
& Baskoro, M.S. 2012. Variability of temperature and chlorophyll-a in
upwelling areas at various ENSO and IOD occurrence in the waters of south Java
to Timor. Ilmu Kelautan - Indonesian
Journal of Marine Science 16(3): 171-180 (In Bahasa Indonesia).
Kuswardani, R.T.D. & Qiao, F.
2014. Influence of the Indonesian throughflow on the upwelling off the east
coast of South Java. Chinese Science
Bulletin 59(33): 4516-4523.
Libungan, L.A. & Palsson, S.
2015a. ShapeR: Collection and analysis of otolith shape data. R package version
0.1-5. https://CRAN.R-project.org/package=shapeR.
Libungan,
L.A. & Palsson, S. 2015b. ShapeR: An R package to study otolith shape
variation among fish populations. PLoS
ONE 10(3): e0121102.
Libungan, L.A., Oskarsson, G.J.,
Slotte, A., Jacobsen, J.A. & Palsson, S. 2015. Otolith shape: A population
marker for Atlantic herring Clupea
harengus. Journal of Fish Biology 86(4): 1377-1395.
Lleonart, J., Salat, J. &
Torres, G.J. 2000. Removing allometric effects of body size in morphological
analysis. Journal of Theoretical Biology 205(1): 85-93.
Lombarte, A., Palmer, M.,
Matallanas, J., Gómez-Zurita, J. & Morales-Nin, B. 2010. Ecomorphological
trends and phylogenetic inertia of otolith sagittae in Nototheniidae. Environmental Biology of Fishes 89(3-4):
607-618.
Longmore, C., Fogarty, K., Neat, F.,
Brophy, D., Trueman, C., Milton, A. & Mariani, S. 2010. A comparison of
otolith microchemistry and otolith shape analysis for the study of spatial
variation in a deep-sea teleost, Coryphaenoides
rupestris. Environmental Biology of
Fishes 89(3-4): 591-605.
Marini, M., Suman, A., Farajallah,
A. & Wardiatno, Y. 2017. Identifying Penaeus
merguiensis de man, 1888 stocks in Indonesian fisheries management area 573:
A truss network analysis approach. AACL
Bioflux 10(4): 922-935.
Moore, B.R., Lestari, P., Cutmore,
S.C., Proctor, C. & Lester, R.J.G. 2019. Movement of juvenile tuna deduced
from parasite data. ICES Journal of
Marine Science 76(6): 1-12.
Moreira, C., Froufe, E., Vaz-Pires,
P. & Correia, A.T. 2019. Otolith shape analysis as a tool to infer the
population structure of the blue jack mackerel, Trachurus picturatus, in the NE Atlantic. Fisheries Research 209: 40-48.
Muto, N., Alama, U.B., Hata, H.,
Guzman, A.M.T., Cruz, R., Gaje, A., Traifalgar, R.F.M., Kakioka, R., Takeshima,
H., Motomura, H., Muto, F., Babaran, R.P. & Ishikawa, S. 2016. Genetic and
morphological differences among the three species of the genus Rastrelliger (Perciformes: Scombridae). Ichthyological Research 63(2): 275-287.
Nason, G. 2012. Wavethresh: Wavelets
statistics and transforms, version 4.5. R package.
http://CRAN.R-project.org/package=wavethresh.
Nurdin, S., Mustapha, M.A., Lihan,
T. & Ghaffar, M.A. 2015. Determination of potential fishing grounds of Rastrelliger kanagurta using satellite
remote sensing and GIS technique. Sains
Malaysiana 44(2): 225-232.
Oksanen, J., Blanchet, F.G., Kindt,
R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P.,
Stevens, M.H.H. & Wagner, H. 2013. Vegan: Community Ecology Package,
Version 2.0-7. R Package. http://CRAN.R-project.org/ package=vegan/.
Oktaviani, D., Supriatna, J.,
Erdmann, M. & Abinawanto, A. 2014. Maturity stages of Indian mackerel Rastrelliger kanagurta (Cuvier, 1817) in
Mayalibit Bay, Raja Ampat, West Papua. International
Journal of Aquatic Science 5(1): 67-76.
Parisi-Baradad, V., Lombarte, A.,
Garcia-Ladona, E., Cabestany, J., Piera, J. & Chic, O. 2005. Otolith shape
contour analysis using affine transformation invariant wavelet transforms and
curvature scale space representation. Marine
and Freshwater Research 56(5): 795-804.
Peng, S., Qian, Y.K., Lumpkin, R.,
Du, Y., Wang, D. & Li, P. 2014. Characteristics of the near-surface
currents in the Indian Ocean as deduced from satellite-tracked surface
drifters. Part I: Pseudo-eulerian statistics. Journal of Physical Oceanography 45(2): 441-458.
Peters, A. & Hothorn, T. 2015.
Ipred: Improve predictors. R package version 0.9-5.
https://cran.r-project.org/package=ipred.
R Core Team. 2016. R: A language and
environment for statistical computing. R Foundation for Statistical Computing.
Vienna, Austria. Version 3.3.3. https://www.r-project.org/.
Reichenbacher, B., Feulner, G.R.
& Schulz-Mirbach, T. 2009. Geographic variation in otolith morphology among
freshwater populations of Aphanius dispar (Teleostei, Cyprinodontiformes) from the southeastern Arabian Peninsula. Journal of Morphology 270(4): 469-484.
Research Institute of Marine
Research. 2014. Potency and Utilization
Level of Fish Resources in the Fisheries Management Areas of the Republic of
Indonesia (WPP RI). Jakarta: Ref Graphika.
Ripley, B., Venables, B., Bates,
D.M., Hornik, K., Gebhardt, A. & Firth, D. 2014. MASS: Support Functions
and Datasets for Venables and Ripley's MASS (4th edition, 2002),
Version 7.3-35. https://cran.r-project.org/package=MASS.
Sadighzadeh, Z., Otero-Ferrer, J.L.,
Lombarte, A., Fatemi, M.R. & Tuset, V.M. 2014b. An approach to unraveling
the coexistence of snappers (Lutjanidae) using otolith morphology. Scientia Marina 78(3): 353-362.
Sadighzadeh, Z., Valinassab, T.,
Vosugi, G., Motallebi, A.A., Fatemi, M.R., Lombarte, A. & Tuset, V.M.
2014a. Use of otolith shape for stock identification of John's snapper, Lutjanus johnii (Pisces: Lutjanidae),
from the Persian Gulf and the Oman Sea. Fisheries
Research 155: 59-63.
Sartimbul, A., Nakata, H., Rohadi,
E., Yusuf, B. & Kadarisman, H.P. 2010. Variations in chlorophyll-a
concentration and the impact on Sardinella
lemuru catches in Bali Strait, Indonesia. Progress in Oceanography 87(1-4): 168-174.
Schneider, C.A., Rasband, W.S. &
Eliceiri, K.W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9(7): 671-675.
Secor, D.H., Dean, J.M. & Laban,
E.H. 1992. Otolith removal and preparation for microchemical examination. In Otolith Microstructure Examination and
Analysis - Canadian Special
Publication of Fisheries and Aquatic 117, edited by Stevenson, D.K. &
Campana, S.E. Ottawa: Department of Fisheries & Oceans. pp. 19-57.
Smale, M.J., Watson, G. & Hecht,
T. 1995. Otolith Atlas of Southern
African Marine Fishes. Grahamstown: J.L.B. Smith Institute of Ichthyology.
Turan, C. 2006. The use of otolith
shape and chemistry to determine stock structure of Mediterranean horse mackerel Trachurus mediterraneus (Steindachner). Journal of Fish Biology 69: 165-180.
Tuset, V.M., Jurado-Ruzafa, A.,
Otero-Ferrer, J.L. & Santamaria, M.T.G. 2019. Otolith phenotypic
variability of the blue jack mackerel, Trachurus
picturatus, from the Canary Islands (NE Atlantic): Implications in its
population dynamic. Fisheries Research 218: 48-58.
Tuset, V.M., Otero-Ferrer, J.L.,
Gomez-Zurita, J., Venerus, L.A., Stransky, C., Imondi,
R., Orlov, A.M., Ye, Z., Santschi, L., Afanasiev, P.K., Zhuang, L., Farre´, M.,
Love, M. & Lombarte, A. 2016. Otolith shape lends support to the sensory
drive hypothesis in rockfishes. Journal
of Evolutionary Biology 29(10): 2083-2097.
Tuset, V.M., Lombarte, A. &
Assis, C.A. 2008. Otolith atlas for the western Mediterranean, north and
central eastern Atlantic. Scientia Marina 72(S1): 7-198.
Vasconcelos, J., Vieira, A.R.,
Sequeira, V., Gonzalez, J.A., Kaufmann, M. & Gordo, L.S. 2018. Identifying
populations of the blue jack mackerel (Trachurus
picturatus) in the Northeast Atlantic by using geometric morphometrics and
otolith shape analysis. Fishery Bulletin 116(1): 81-92.
Vignon, M. & Morat, F. 2010.
Environmental and genetic determinant of otolith shape revealed by a
non-indigenous tropical fish. Marine
Ecology Progress Series 411: 231-241.
Volpedo, A.V. & Fuchs, D.V.
2010. Ecomorphological patterns of the lapilli of Paranoplatense Siluriforms (South America). Fisheries Research 102: 160-165.
Volpedo, A.V., Tombari, A.D. &
Echeverría, D.D. 2008. Eco-morphological patterns of the sagitta of Antarctic
fish. Polar Biology 31(5): 635-640.
Warnes, G.R., Bolker, B.,
Bonebakker, L., Gentleman, R., Liaw, W.H.A., Lumley, T., Maechler, M.,
Magnusson, A., Moeller, S. & Schwartz, M. 2015. gplots: Various R
programming tools for plotting data. R package version 2.17. 0.
http://cran.r-project.org/package=gplots.
White,
W.T., Last, P.R., Dharmadi, Faizah, R., Chodrijah, U., Prisantoso, B.I.,
Pogonoski, J.J., Puckridge, M. & Blaber, S.J.M. 2013. Market Fishes of Indonesia (Jenis-jenis Ikan di Indonesia). ACIAR
Monograph No. 155. Canberra, Australia: Australian Centre for International
Agricultural Research (ACIAR).
Wujdi, A., Setyadji, B. &
Nugroho, S.C. 2017. Stock structure identification of skipjack tuna (Katsuwonus pelamis Linnaeus, 1758) in
Indian Ocean (Indonesian territory of FMA 573) using otolith shape analysis. Jurnal Penelitian Perikanan Indonesia 23(2): 77-88 (in Bahasa Indonesia).
Zamroni, A., Suwarso & Kuswoyo,
A. 2017. Genetic variation of Indian mackerel, Rastrelliger kanagurta (Cuvier, 1817) in the waters of eastern
Indonesia. Bawal Widya Perikanan Tangkap 9(2): 123-131.
Zamroni, A., Suwarso &
Mardlijah, S. 2016. Populations genetic of Indian mackerel (Rastrelliger kanagurta Cuvier, 1817) in
west Sumatera, Malacca Strait, and South China Sea. Jurnal Penelitian Perikanan Indonesia 22(1): 1-8.
*Corresponding author; email: ariefwujdi@kkp.go.id
|