Sains Malaysiana 51(1)(2022): 51-65

http://doi.org/10.17576/jsm-2022-5101-05

 

Flash Flood Susceptibility Mapping of Sungai Pinang Catchment using Frequency Ratio

(Pemetaan Kerentanan Banjir Kilat Tadahan Sungai Pinang menggunakan Nisbah Kekerapan)

 

AZLAN SALEH1, ALI YUZIR1* & NURIDAH SABTU2

 

1Disaster Preparedness & Prevention Centre (DPPC), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia (UTM), 54100 Kuala Lumpur, Federal Territory Malaysia

 

2School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia

 

Received: 23 November 2020/Accepted: 1 May 2021

 

ABSTRACT

Flash flood are natural disasters that frequently occur in Malaysia especially in urban areas. Due to this, the development of flash flood susceptibility mapping one of the tools used to aid the local authority in reducing and managing the flash flood impact. Frequency Ratio (FR) is a popular method in predictive modeling because of its capabilities to determine the critical conditioning factor of flash flood. The aim of this research was to compare the standalone FR with Ensemble FR-AHP. This ensemble method uses pair-wise comparison method between Frequency Ratio and Analytical Hierarchy Process (AHP). For this research, ten conditioning factors were selected which were slope, aspect, curvature, Topographic Wetness Index (TWI), Stream Power Index (SPI), Normalized Difference Vegetation Index (NDVI), distance from river, rainfall, elevation, and land use/land cover (LULC). The flash flood inventory was obtained from local authorities where the flash flood occurred in Penang, Malaysia on November 2017. 70% of 110 flooded locations were used as training dataset to assess the spatial distribution of flooding whereas the remaining 30% flooded locations were used as validation dataset. Based on the results, the prediction rate of FR-AHP method is slightly better accuracy compared to FR method which 88.33% (FR-AHP) and 85.62% (FR). The output of this research is crucial to assist local authority in land use planning and drainage system of the study area.

 

Keywords: Analytical hierarchy process; flash flood; frequency ratio; susceptibility mapping

 

ABSTRAK

Banjir kilat merupakan salah satu bencana alam yang kerap berlaku di Malaysia terutama di kawasan bandar. Disebabkan masalah ini, pembangunan peta rentatan banjir kilat boleh dijadikan alat untuk pihak berkuasa tempatan untuk mengurus dan mengurangkan risiko banjir. Nisbah Frekuensi (FR) adalah salah satu kaedah yang popular dalam ramalan model kerana kebolehupayaannya dan juga dapat menentukan faktor keadaan kritikal banjir kilat. Tujuan penyelidikan ini adalah untuk membandingkan FR dengan gabungan FR-AHP. Kaedah gabungan ini menggunakan kaedah perbandingan ikut pasangan antara Nisbah Frekuensi dengan Proses Hierarki Analitik (AHP). Untuk penyelidikan ini, sepuluh faktor keadaan dipilih iaitu cerun, aspek, kelengkungan, Indeks Kelembapan Topografi (TWI), Indeks Kuasa Aliran (SPI), Indeks Vegetasi Perbezaan Normalisasi (NDVI), jarak dari sungai, hujan, ketinggian, dan guna tanah/litupan tanah (LULC). Inventori banjir kilat diperoleh daripada pihak berkuasa tempatan - banjir kilat berlaku di Pulau Pinang, Malaysia pada bulan November 2017. 70% daripada 110 lokasi banjir digunakan sebagai data latihan untuk menilai taburan ruang banjir dan 30% lokasi banjir lain digunakan sebagai set data pengesahan. Berdasarkan hasilnya, kadar ramalan kaedah FR-AHP mendapat ketepatan yang lebih baik dibandingkan dengan kaedah FR iaitu 88.33% (FR-AHP) dan 85.62% (FR). Hasil daripada kajian ini dapat membantu pihak berkuasa tempatan dalam perancangan penggunaan tanah dan sistem perparitan kawasan kajian.

 

Kata kunci: Banjir kilat; nisbah frekuensi; peta rentatan; proses hierarki analitik

 

REFERENCES

Althuwaynee, O.F., Pradhan, B., Park, H.J. & Lee, J.H. 2014. A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena 114: 21-36.

Bradley, A.P. 1997. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30(7): 1145-1159.

Bui, D.T., Khosravi, K., Shahabi, H., Daggupati, P., Adamowski, J.F., Melesse, A.M., Thai Pham, B., Pourghasemi, H.R., Mahmoudi, M., Bahrami, S. & Pradhan, B. 2019a. Flood spatial modeling in Northern Iran using remote sensing and GIS: A comparison between evidential belief functions and its ensemble with a multivariate logistic regression model. Remote Sensing 11(13): 1589.

Bui, D.T., Ngo, P.T., Pham, T.D., Jaafari, A., Minh, N.Q., Hoa, P.V. & Samui, P. 2019b. A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping. Catena 179: 184-196.

Cao, C., Xu, P., Wang, Y., Chen, J., Zheng, L. & Niu, C. 2016. Flash flood hazard susceptibility mapping using frequency ratio and statistical index methods in coalmine subsidence areas. Sustainability 8(9): 948.

Chapi, K., Singh, V.P., Shirzadi, A., Shahabi, H., Bui, D.T., Pham, B.T. & Khosravi, K. 2017. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environmental Modelling & Software 95: 229-245.

Chee, H.L., Tan, D.T., Chan, N.W. & Zakaria, N.A. 2018. Applying a system thinking approach to explore root cause of river pollution: A preliminary study of Pinang river in Penang state, Malaysia. In Proceedings of the 21st IAHR-APD Congress 2018. pp. 1441-1448.

Conforti, M., Aucelli, P.P.C., Robustelli, G. & Scarciglia, F. 2011. Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Natural Hazards 56(3): 881-898.

Costache, R. 2019. Flash-flood potential assessment in the upper and middle sector of Prahova river catchment (Romania). A comparative approach between four hybrid models. Science of the Total Environment 659: 1115-1134.

Costache, R. & Bui, D.T. 2019. Spatial prediction of flood potential using new ensembles of bivariate statistics and artificial intelligence: A case study at the Putna river catchment of Romania. Science of the Total Environment 691: 1098-1118.

Costache, R., Popa, M.C., Bui, D.T., Diaconu, D.C., Ciubotaru, N., Minea, G. & Pham, Q.B. 2020. Spatial predicting of flood potential areas using novel hybridizations of fuzzy decision-making, bivariate statistics, and machine learning. Journal of Hydrology 585: 124808.

Dano, U.L., Balogun, A.L., Matori, A.N., Wan Yusouf, K., Abubakar, I.R., Said Mohamed, M.A., Aina, Y.A. & Pradhan, B. 2019. Flood susceptibility mapping using GIS-based analytic network process: A case study of Perlis, Malaysia. Water 11(3): 615.

Ghosh, S., John, E., Carranza, M., Westen, C.J.V., Jetten, V.G. & Bhattacharya, D.N. 2011. Geomorphology Selecting and weighting spatial predictors for empirical modeling of landslide susceptibility in the Darjeeling Himalayas (India). Geomorphology 131(1-2): 35-56.

Hashim, M., Misbari, S. & Pour, A.B. 2018 Landslide mapping and assessment by integrating Landsat-8, PALSAR-2 and GIS techniques: A case study from Kelantan State, Peninsular Malaysia.  Journal of the Indian Society of Remote Sensing 46(2): 233-248.

Hong, H., Tsangaratos, P., Ilia, I., Liu, J., Zhu, A.X. & Chen, W. 2018. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Science of the Total Environment 625: 575-588.

Hussaini, H.A. 2007. Flood and Drought Management in Malaysia. Kuala Lumpur: Ministry of Natural Resources and Environment. Speech given on 21 June 2007.

Jebur, M.N., Pradhan, B., Shafri, H.Z.M.M., Yusoff, Z.M. & Tehrany, M.S. 2015. An integrated user-friendly ArcMAP tool for bivariate statistical modelling in geoscience applications. Geoscientific Model Development 8(3): 881-891.

Khosravi, K., Pham, B.T., Chapi, K., Shirzadi, A., Shahabi, H., Revhaug, I., Prakash, I. & Bui, D.T. 2018. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Science of the Total Environment 627: 744-755.

Khosravi, K., Nohani, E., Maroufinia, E. & Pourghasemi, H.R. 2016a. A GIS-based flood susceptibility assessment and its mapping in Iran: A comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Natural Hazards 83(2): 947-987.

Khosravi, K., Pourghasemi, H.R., Chapi, K. & Bahri, M. 2016b. Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: A comparison between Shannon’s entropy, statistical index, and weighting factor models. Environmental Monitoring and Assessment 188(12): 1-21.

Kia, M.B., Moradi, A., Pirasteh, S., Pradhan, B., Mahmud, A.R., Sulaiman, W.N.A. & Moradi, A. 2011. An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental Earth Sciences 67(1): 251-264.

Koirala, S. 2011. Some flood damage estimates of the world. UNESCO-IHE Flood Management Education Platform. http://www.unesco-ihe.org/Flood-Management-Education-Platform Accessed on January 2012..

Lee, S. & Pradhan, B. 2007. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4(1): 33-41.

Li, L., Lan, H., Guo, C., Zhang, Y., Li, Q. & Wu, Y. 2017. A modified frequency ratio method for landslide susceptibility assessment. Landslides 14(2): 727-741.

Pradhan, B. & Youssef, A.M. 2011. A 100-year maximum flood susceptibility mapping using integrated hydrological and hydrodynamic models: Kelantan River Corridor, Malaysia. Journal of Flood Risk Management 4(3): 189-202.

Pradhan, B., Mansor, S., Pirasteh, S. & Buchroithner, M.F. 2011. Landslide hazard and risk analyses at a landslide prone catchment area using statistical based geospatial model. International Journal of Remote Sensing 32(14): 4075-4087.

Pradhan, B., Suliman, M.D.H. & Awang, M.A. 2007. Forest fire susceptibility and risk mapping using remote sensing and geographical information systems (GIS). Disaster Prevention and Management: An International Journal 16(3): 344-352.

Rahmati, O., Darabi, H., Haghighi, A.T., Stefanidis, S., Kornejady, A., Nalivan, O.A. & Bui, D.T. 2019. Urban flood hazard modeling using self-organizing map neural network. Water 11(11): 2370.

Regmi, A.D., Devkota, K.C., Yoshida, K., Pradhan, B., Pourghasemi, H.R., Kumamoto, T. & Akgun, A. 2014. Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arabian Journal of Geosciences 7(2): 725-742.

Saleh, A., Yuzir, A. & Abustan, I. 2020. Flash flood susceptibility modelling: A review. In IOP Conference Series: Materials Science and Engineering. p. 012005.

Samanta, R.K., Bhunia, G.S., Shit, P.K. & Pourghasemi, H.R. 2018. Flood susceptibility mapping using geospatial frequency ratio technique: A case study of Subarnarekha river basin, India. Modeling Earth Systems and Environment 4(1): 395-408.

Tehrany, M.S., Jones, S. & Shabani, F. 2019a. Identifying the essential flood conditioning factors for flood prone area mapping using machine learning techniques. Catena 175: 174-192.

Tehrany, M.S., Jones, S., Shabani, F., Martínez-Álvarez, F. & Bui, D.T. 2019b. A novel ensemble modeling approach for the spatial prediction of tropical forest fire susceptibility using LogitBoost machine learning classifier and multi-source geospatial data. Theoretical and Applied Climatology 137(1-2): 637-653.

Tehrany, M.S., Shabani, F., Jebur, M.N., Hong, H., Chen, W. & Xie, X. 2017. GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomatics, Natural Hazards and Risk 8(2): 1538-1561.

Tehrany, M.S., Pradhan, B., Mansor, S. & Ahmad, N. 2015. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena 125: 91-101.

Tehrany, M.S., Lee, M.J., Pradhan, B., Jebur, M.N. & Lee, S. 2014. Flood susceptibility mapping using integrated bivariate and multivariate statistical models. Environmental Earth Sciences 72(10): 4001-4015.

Tehrany, M.S., Pradhan, B. & Jebur, M.N. 2013. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology 504: 69-79.

The Star. 2018. Penang population to hit 1.8mil. The Star Online.

Tjaardstra, A. 2015. Malaysia flood damage to cost $560m. Post UK. Accessed on 5 April 2019.

Youssef, A.M. & Hegab, M.A. 2019. Flood-hazard assessment modeling using multicriteria analysis and GIS: a case study - Ras Gharib area, Egypt. Spatial Modeling in GIS and R for Earth and Environmental Sciences, edited by Pourghasemi, H.R. & Gokceoglu, C.  Amsterdam: Elsevier. pp. 229-257.

Youssef, A.M., Pradhan, B. & Sefry, S.A. 2016. Flash flood susceptibility assessment in Jeddah city (Kingdom of Saudi Arabia) using bivariate and multivariate statistical models. Environmental Earth Sciences 75(1): 1-16.

Zakaria, S.F., Zin, R.M., Mohamad, I., Balubaid, S. & Mydin, S.H. 2017. The development of flood map in Malaysia. In AIP Conference Proceedings. p. 110006.

 

*Corresponding author; email: muhdaliyuzir@utm.my

 

     

 

 

previous