Sains Malaysiana 51(1)(2022): 51-65
http://doi.org/10.17576/jsm-2022-5101-05
Flash
Flood Susceptibility Mapping of Sungai Pinang Catchment using Frequency Ratio
(Pemetaan
Kerentanan Banjir Kilat Tadahan Sungai Pinang menggunakan Nisbah Kekerapan)
AZLAN
SALEH1, ALI YUZIR1* & NURIDAH SABTU2
1Disaster Preparedness & Prevention
Centre (DPPC), Malaysia-Japan International Institute of Technology (MJIIT),
Universiti Teknologi Malaysia (UTM), 54100 Kuala Lumpur, Federal Territory
Malaysia
2School
of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300
Nibong Tebal, Penang, Malaysia
Received: 23 November 2020/Accepted: 1 May 2021
ABSTRACT
Flash flood are natural disasters that frequently
occur in Malaysia especially in urban areas. Due to this, the development of
flash flood susceptibility mapping one of the tools used to aid the local
authority in reducing and managing the flash flood impact. Frequency Ratio (FR)
is a popular method in predictive modeling because of its capabilities to
determine the critical conditioning factor of flash flood. The aim of this
research was to compare the standalone FR with Ensemble FR-AHP. This ensemble
method uses pair-wise comparison method between Frequency Ratio and Analytical
Hierarchy Process (AHP). For this research, ten conditioning factors were
selected which were slope, aspect, curvature, Topographic Wetness Index (TWI),
Stream Power Index (SPI), Normalized Difference Vegetation Index (NDVI),
distance from river, rainfall, elevation, and land use/land cover (LULC). The
flash flood inventory was obtained from local authorities where the flash flood
occurred in Penang, Malaysia on November 2017. 70% of 110 flooded locations
were used as training dataset to assess the spatial distribution of flooding
whereas the remaining 30% flooded locations were used as validation dataset.
Based on the results, the prediction rate of FR-AHP method is slightly better
accuracy compared to FR method which 88.33% (FR-AHP) and 85.62% (FR). The
output of this research is crucial to assist local authority in land use
planning and drainage system of the study area.
Keywords: Analytical hierarchy process; flash flood;
frequency ratio; susceptibility mapping
ABSTRAK
Banjir kilat merupakan salah satu bencana alam yang
kerap berlaku di Malaysia terutama di kawasan bandar. Disebabkan masalah ini,
pembangunan peta rentatan banjir kilat boleh dijadikan alat untuk pihak
berkuasa tempatan untuk mengurus dan mengurangkan risiko banjir. Nisbah
Frekuensi (FR) adalah salah satu kaedah yang popular dalam ramalan model kerana
kebolehupayaannya dan juga dapat menentukan faktor keadaan kritikal banjir
kilat. Tujuan penyelidikan ini adalah untuk membandingkan FR dengan gabungan
FR-AHP. Kaedah gabungan ini menggunakan kaedah perbandingan ikut pasangan
antara Nisbah Frekuensi dengan Proses Hierarki Analitik (AHP). Untuk
penyelidikan ini, sepuluh faktor keadaan dipilih iaitu cerun, aspek,
kelengkungan, Indeks Kelembapan Topografi (TWI), Indeks Kuasa Aliran (SPI),
Indeks Vegetasi Perbezaan Normalisasi (NDVI), jarak dari sungai, hujan,
ketinggian, dan guna tanah/litupan tanah (LULC). Inventori banjir kilat
diperoleh daripada pihak berkuasa tempatan - banjir kilat berlaku di Pulau Pinang,
Malaysia pada bulan November 2017. 70% daripada 110 lokasi banjir digunakan
sebagai data latihan untuk menilai taburan ruang banjir dan 30% lokasi banjir
lain digunakan sebagai set data pengesahan. Berdasarkan hasilnya, kadar ramalan
kaedah FR-AHP mendapat ketepatan yang lebih baik dibandingkan dengan kaedah FR
iaitu 88.33% (FR-AHP) dan 85.62% (FR). Hasil daripada kajian ini dapat membantu
pihak berkuasa tempatan dalam perancangan penggunaan tanah dan sistem
perparitan kawasan kajian.
Kata kunci: Banjir kilat; nisbah frekuensi; peta
rentatan; proses hierarki analitik
REFERENCES
Althuwaynee, O.F., Pradhan, B., Park, H.J. & Lee,
J.H. 2014. A novel ensemble bivariate statistical evidential belief function
with knowledge-based analytical hierarchy process and multivariate statistical
logistic regression for landslide susceptibility mapping. Catena 114: 21-36.
Bradley, A.P. 1997. The use of the area
under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30(7): 1145-1159.
Bui, D.T., Khosravi, K., Shahabi, H.,
Daggupati, P., Adamowski, J.F., Melesse, A.M., Thai Pham, B., Pourghasemi,
H.R., Mahmoudi, M., Bahrami, S. & Pradhan, B. 2019a. Flood spatial modeling
in Northern Iran using remote sensing and GIS: A comparison between evidential
belief functions and its ensemble with a multivariate logistic regression
model. Remote Sensing 11(13): 1589.
Bui, D.T., Ngo, P.T., Pham, T.D., Jaafari, A., Minh,
N.Q., Hoa, P.V. & Samui, P. 2019b. A novel hybrid approach based on a swarm
intelligence optimized extreme learning machine for flash flood susceptibility
mapping. Catena 179: 184-196.
Cao, C., Xu, P., Wang, Y., Chen, J., Zheng,
L. & Niu, C. 2016. Flash flood hazard susceptibility mapping using
frequency ratio and statistical index methods in coalmine subsidence areas. Sustainability 8(9): 948.
Chapi, K., Singh, V.P., Shirzadi, A.,
Shahabi, H., Bui, D.T., Pham, B.T. & Khosravi, K. 2017. A novel hybrid
artificial intelligence approach for flood susceptibility assessment. Environmental Modelling & Software 95: 229-245.
Chee, H.L., Tan, D.T., Chan, N.W. &
Zakaria, N.A. 2018. Applying a system thinking approach to explore root cause
of river pollution: A preliminary study of Pinang river in Penang state,
Malaysia. In Proceedings of the 21st
IAHR-APD Congress 2018. pp. 1441-1448.
Conforti, M., Aucelli, P.P.C., Robustelli,
G. & Scarciglia, F. 2011. Geomorphology and GIS analysis for mapping gully
erosion susceptibility in the Turbolo stream catchment (Northern Calabria,
Italy). Natural Hazards 56(3):
881-898.
Costache, R. 2019. Flash-flood potential
assessment in the upper and middle sector of Prahova river catchment (Romania).
A comparative approach between four hybrid models. Science of the Total Environment 659: 1115-1134.
Costache, R. & Bui, D.T. 2019. Spatial
prediction of flood potential using new ensembles of bivariate statistics and
artificial intelligence: A case study at the Putna river catchment of Romania. Science of the Total Environment 691:
1098-1118.
Costache, R., Popa, M.C., Bui, D.T.,
Diaconu, D.C., Ciubotaru, N., Minea, G. & Pham, Q.B. 2020. Spatial
predicting of flood potential areas using novel hybridizations of fuzzy
decision-making, bivariate statistics, and machine learning. Journal of Hydrology 585: 124808.
Dano, U.L., Balogun, A.L., Matori, A.N.,
Wan Yusouf, K., Abubakar, I.R., Said Mohamed, M.A., Aina, Y.A. & Pradhan,
B. 2019. Flood susceptibility mapping using GIS-based analytic network process:
A case study of Perlis, Malaysia. Water 11(3): 615.
Ghosh, S., John, E., Carranza, M., Westen,
C.J.V., Jetten, V.G. & Bhattacharya, D.N. 2011. Geomorphology Selecting and
weighting spatial predictors for empirical modeling of landslide susceptibility
in the Darjeeling Himalayas (India). Geomorphology 131(1-2): 35-56.
Hashim, M., Misbari, S. & Pour, A.B.
2018 Landslide mapping and assessment by integrating Landsat-8, PALSAR-2 and
GIS techniques: A case study from Kelantan State, Peninsular Malaysia. Journal
of the Indian Society of Remote Sensing 46(2): 233-248.
Hong, H., Tsangaratos, P., Ilia, I., Liu,
J., Zhu, A.X. & Chen, W. 2018. Application of fuzzy weight of evidence and
data mining techniques in construction of flood susceptibility map of Poyang
County, China. Science of the Total
Environment 625: 575-588.
Hussaini, H.A. 2007. Flood and Drought Management in Malaysia. Kuala Lumpur: Ministry of Natural Resources and Environment. Speech given on 21 June 2007.
Jebur, M.N., Pradhan, B., Shafri, H.Z.M.M.,
Yusoff, Z.M. & Tehrany, M.S. 2015. An integrated user-friendly ArcMAP tool
for bivariate statistical modelling in geoscience applications. Geoscientific Model Development 8(3):
881-891.
Khosravi, K., Pham, B.T., Chapi, K., Shirzadi, A.,
Shahabi, H., Revhaug, I., Prakash, I. & Bui, D.T. 2018. A comparative
assessment of decision trees algorithms for flash flood susceptibility modeling
at Haraz watershed, northern Iran. Science
of the Total Environment 627: 744-755.
Khosravi, K., Nohani, E., Maroufinia, E.
& Pourghasemi, H.R. 2016a. A GIS-based flood susceptibility assessment and
its mapping in Iran: A comparison between frequency ratio and
weights-of-evidence bivariate statistical models with multi-criteria
decision-making technique. Natural
Hazards 83(2): 947-987.
Khosravi, K., Pourghasemi, H.R., Chapi, K.
& Bahri, M. 2016b. Flash flood susceptibility analysis and its mapping
using different bivariate models in Iran: A comparison between Shannon’s
entropy, statistical index, and weighting factor models. Environmental Monitoring and Assessment 188(12): 1-21.
Kia, M.B., Moradi, A., Pirasteh, S., Pradhan, B.,
Mahmud, A.R., Sulaiman, W.N.A. & Moradi, A. 2011. An artificial neural
network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental Earth Sciences 67(1):
251-264.
Koirala, S. 2011. Some flood damage estimates of the world. UNESCO-IHE Flood Management Education Platform. http://www.unesco-ihe.org/Flood-Management-Education-Platform Accessed on January 2012..
Lee, S. & Pradhan, B. 2007. Landslide
hazard mapping at Selangor, Malaysia using frequency ratio and logistic
regression models. Landslides 4(1):
33-41.
Li, L., Lan, H., Guo, C., Zhang, Y., Li, Q.
& Wu, Y. 2017. A modified frequency ratio method for landslide
susceptibility assessment. Landslides 14(2): 727-741.
Pradhan, B. & Youssef, A.M. 2011. A
100-year maximum flood susceptibility mapping using integrated hydrological and
hydrodynamic models: Kelantan River Corridor, Malaysia. Journal of Flood Risk Management 4(3): 189-202.
Pradhan, B., Mansor, S., Pirasteh, S. &
Buchroithner, M.F. 2011. Landslide hazard and risk analyses at a landslide
prone catchment area using statistical based geospatial model. International Journal of Remote Sensing 32(14): 4075-4087.
Pradhan, B., Suliman, M.D.H. & Awang,
M.A. 2007. Forest fire susceptibility and risk mapping using remote sensing and
geographical information systems (GIS). Disaster
Prevention and Management: An International Journal 16(3): 344-352.
Rahmati, O., Darabi, H., Haghighi, A.T.,
Stefanidis, S., Kornejady, A., Nalivan, O.A. & Bui, D.T. 2019. Urban flood
hazard modeling using self-organizing map neural network. Water 11(11): 2370.
Regmi, A.D., Devkota, K.C., Yoshida, K.,
Pradhan, B., Pourghasemi, H.R., Kumamoto, T. & Akgun, A. 2014. Application
of frequency ratio, statistical index, and weights-of-evidence models and their
comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arabian Journal of Geosciences 7(2):
725-742.
Saleh, A., Yuzir, A. & Abustan, I.
2020. Flash flood susceptibility modelling: A review. In IOP Conference Series: Materials Science and Engineering. p.
012005.
Samanta, R.K., Bhunia, G.S., Shit, P.K.
& Pourghasemi, H.R. 2018. Flood susceptibility mapping using geospatial
frequency ratio technique: A case study of Subarnarekha river basin, India. Modeling Earth Systems and Environment 4(1): 395-408.
Tehrany, M.S., Jones, S. & Shabani, F.
2019a. Identifying the essential flood conditioning factors for flood prone
area mapping using machine learning techniques. Catena 175: 174-192.
Tehrany, M.S., Jones, S., Shabani, F.,
Martínez-Álvarez, F. & Bui, D.T. 2019b. A novel ensemble modeling approach
for the spatial prediction of tropical forest fire susceptibility using
LogitBoost machine learning classifier and multi-source geospatial data. Theoretical and Applied Climatology 137(1-2): 637-653.
Tehrany, M.S., Shabani, F., Jebur, M.N.,
Hong, H., Chen, W. & Xie, X. 2017. GIS-based spatial prediction of flood
prone areas using standalone frequency ratio, logistic regression, weight of
evidence and their ensemble techniques. Geomatics,
Natural Hazards and Risk 8(2): 1538-1561.
Tehrany, M.S., Pradhan, B., Mansor, S.
& Ahmad, N. 2015. Flood susceptibility assessment using GIS-based support
vector machine model with different kernel types. Catena 125: 91-101.
Tehrany, M.S., Lee, M.J., Pradhan, B.,
Jebur, M.N. & Lee, S. 2014. Flood susceptibility mapping using integrated
bivariate and multivariate statistical models. Environmental Earth Sciences 72(10): 4001-4015.
Tehrany, M.S., Pradhan, B. & Jebur,
M.N. 2013. Spatial prediction of flood susceptible areas using rule based
decision tree (DT) and a novel ensemble bivariate and multivariate statistical
models in GIS. Journal of Hydrology 504: 69-79.
The Star. 2018. Penang population to hit
1.8mil. The Star Online.
Tjaardstra, A. 2015. Malaysia flood damage
to cost $560m. Post UK. Accessed on 5
April 2019.
Youssef, A.M. & Hegab, M.A. 2019.
Flood-hazard assessment modeling using multicriteria analysis and GIS: a case
study - Ras Gharib area, Egypt. Spatial
Modeling in GIS and R for Earth and Environmental Sciences, edited by
Pourghasemi, H.R. & Gokceoglu, C. Amsterdam: Elsevier. pp. 229-257.
Youssef, A.M., Pradhan, B. & Sefry,
S.A. 2016. Flash flood susceptibility assessment in Jeddah city (Kingdom of
Saudi Arabia) using bivariate and multivariate statistical models. Environmental Earth Sciences 75(1):
1-16.
Zakaria, S.F., Zin, R.M., Mohamad, I.,
Balubaid, S. & Mydin, S.H. 2017. The development of flood map in Malaysia.
In AIP Conference Proceedings. p.
110006.
*Corresponding author; email: muhdaliyuzir@utm.my
|