Sains Malaysiana 51(3)(2022): 633-642
http://doi.org/10.17576/jsm-2022-5103-01
Allelopathic
Potential of Cassava (Manihot esculenta L.) Extracts on Germination and
Seedling Growth of Selected Weeds and Aerobic Rice
(Potensi Alelopati Ekstrak Ubi Kayu (Manihot exulenta L.) terhadap Percambahan dan Pertumbuhan Anak Benih Rumpai Terpilih dan Padi Aerobik)
SITI AISYAH MOHAMMAD TAUPIK1,2,3,4, SITI NUR ANISAH AANI3, CHIA POH WAI5 & CHUAH TSE SENG2,*
1Institute of Graduate Studies, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan,
Malaysia
2Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, 02600 Arau, Perlis Indera Kayangan, Malaysia
3Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, 77300 UiTM Merlimau, Melaka, Malaysia
4Faculty of Fisheries and Food Sciences, Universiti Malaysia Terengganu, 21030 UMT Kuala Nerus,
Terengganu Darul Iman, Malaysia
5Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 UMT Kuala Nerus,
Terengganu Darul Iman, Malaysia
Received: 15 September 2020/Accepted: 25
February 2021
ABSTRACT
Weed infestation is a major
problem in the aerobic rice system due to the lack of standing water that could
prevent the growth of weeds. To reduce heavy reliance on herbicide, this
research aims to determine the potential of cassava allelopathy for inhibition
of weeds in aerobic rice. The allelopathic potential of cassava extracts on the
germination and growth of tested weed species (Eleusine indica, Ageratum conyzoides, and Cyperus distans)
and aerobic rice (Oryza sativa) was conducted in the laboratory. The
results showed that increasing the aqueous extract concentrations of cassava
extracts inhibited the germination and seedling growth of tested weeds, suggesting
the allelopathic effects of cassava extracts are concentration dependent. The
degree of phytotoxicity of different vegetative parts of cassava can be
classified in order of decreasing inhibition as follows: leaf, stem, tuber, and
tuber peel. Aqueous leaf extract of cassava at a concentration of 0.5% (w/v)
provided complete inhibition on A. conyzoides, E. indica, and C. distansgermination
whereas 25% to 100% inhibition on the shoot growth was recorded. By contrast,
the shoot growth and germination of aerobic rice were not affected. These
results suggest that the cassava leaf extracts contain water-soluble
allelochemicals for inhibition on A. conyzoides,
E. indica, and C. distans in aerobic rice.
Keywords: Ageratum conyzoides; aqueous leaf extract; Cyperus distans; Eleusine indica; Manihot esculenta
ABSTRAK
Serangan rumpai adalah masalah utama dalam sistem padi aerobik kerana kekurangan air bertakung dapat mengawal pertumbuhan rumpai. Bagi mengurangkan kebergantungan yang tinggi pada racun rumpai, kajian ini bertujuan untuk menentukan potensi alelopati ubi kayu untuk perencatan rumpai dalam padi aerobik. Potensi alelopati ekstrak ubi kayu terhadap percambahan dan pertumbuhan rumpai (Eleusine indica,
Ageratum conyzoides dan Cyperus distans) dan padi aerobik (Oryza sativa) dijalankan dalam pengasaian makmal. Hasil kajian menunjukkan bahawa peningkatan kepekatan ekstrak akues ubi kayu telah merencatkan percambahan, pertumbuhan anak benih dan pertumbuhan akar rumpai yang diuji dan ini mencadangkan kesan alelopati ekstrak ubi kayu bergantung kepada kepekatan. Tahap kefitotoksikan daripada bahagian vegetatif ubi kayu yang berbeza dapat dikelaskan dalam urutan penurunan perencatan seperti berikut: daun, batang, ubi dan kulit. Ekstrak daun ubi kayu pada kepekatan 0.5% (w/v) memberi perencatan sepenuhnya terhadap percambahan rumpai manakala perencatan sebanyak 25% hingga 100% ke atas pertumbuhan pucuk A. conyzoides, E. indica dan C. distans dicatatkan. Sebaliknya, pertumbuhan pucuk dan percambahan padi aerobik tidak terjejas. Hasil ini menunjukkan bahawa ekstrak daun ubi kayu mengandungi alelokimia yang larut dalam air untuk merencat A. conyzoides, E. indica dan C. distans dalam padi aerobik.
Kata kunci: Ageratum conyzoides; Cyperus distans; ekstrak daun ubi; Eleusine indica; Manihot esculenta
REFERENCES
Abbas, T., Nadeem, M.A.,
Tanveer, A. & Chauhan, B.S. 2017. Can hormesis of plant-released
phytotoxins be used to boost and sustain crop production. Crop Protection 93:
69-76.
Adhikary, S.P. 2019. Efficacy of
rice-stubble allelochemicals on vegetative growth parameters of some
oil-yielding crops. International Journal of Trend in Scientific Research
and Development 3(2): 2456-6470.641
Ahmed, H.M. 2018. Phytochemical screening,
total phenolic content and phytotoxic activity of corn (Zea mays) extracts against some indicator species. Natural Product Research 32(6):
714-718.
Alam, A., Hakim, M.A., Juraimi,
A.S., Rafii, M.Y., Hasan, M.M. & Aslani, F. 2015. Potential allelopathic effects of rice
plant aqueous extracts on germination and seedling growth of some rice field
common weeds. Italian Journal of Agronomy 13(2): 134-140.
Altemimi, A., Lakhssassi,
N., Baharlouei, A. & Watson, D.G. 2017.
Phytochemicals: Extraction, isolation, and identification of bioactive compounds
from plant extracts. Plants 6(42): 1-23.
Al-Shatti, A.H., Redha, A., Suleman, P. & Al-Hasan, R. 2014. The
allelopathic potential of Conocarpus lancifolius(Engl.) leaves on dicot (Vigna sinensisL.), monocot (Zea mays L.) and soil-borne pathogenic fungi. American Journal of Plant
Sciences 5(19): 2889-2903.
Anwar, M.P., Juraimi,
A.S., Samedani, B., Puteh,
A. & Man, A. 2012. Critical period of weed control in aerobic rice. The
Scientific World Journal 2012: 603043.
Chon, S.U., Choi, S.K., Jung, S., Jang,
H.G., Pyo, B.S. & Kim, S.M. 2002. Effects of
alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and
root morphology of alfalfa and barnyard grass. Crop Protection 12:
1077-1082.
Chuah, T.S. & Lim, W.K. 2015. Assessment of
phytotoxic potential of oil palm leaflet, rachis and frond extracts and powders
on goosegrass (Eleusine indica(L.) Gaertn.)
germination, emergence and seedling growth. Malaysian Applied Biology 44(2):
75-84.
Cowie, B.W., Venter, N., Witkowski, E.T.F.
& Byrne, M.J. 2020. Implications of elevated carbon dioxide on the
susceptibility of the globally invasive weed, Parthenium hysterophorus,
to glyphosate herbicide. Pest Management Science 76: 2324-2332.
Dilipkumar, M. & Chuah,
T.S. 2013. Allelopathic effects of sunflower leaf extract and selected
pre-emergence herbicides on barnyardgrass. Journal
of Tropical Agriculture and Food Science 41(2): 309-318.
Ferreira-Junior, D.F., Sarmento,
R.A., Saraiva, A. de S., Pereira, R.R., Picanço,
M.C., Pestana, J.L.T. & Soares, A.M.V.M. 2017.
Low concentrations of glyphosate-based herbicide affects the development of Chironomus xanthus. Water,
Air, and Soil Pollution 228: 1-8.
Gazola, D., Zucareli,
C., Ringenberg, R., de Oliveira, M.C.N., da Graça, J.P., de Oliveira Nunes, E. & Hoffmann-Campo,
C.B. 2019. Secondary metabolite contents in different parts of cassava plants
infested by Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae). Arthropod-Plant Interactions 13: 359-366.
Ghareib, H.R.A., Abdelhamed,
M.S. & Ibrahim, O.H. 2010. Antioxidative effects of the acetone fraction
and vanillic acid from Chenopodium muraleon tomato plants. Weed Biology and Management 10: 64-72.
Ghersa, C.M., Benech-Arnold,
R.L., Satorre, E.H. & Martínez-Ghersa, M.A. 2000. Advances in weed management strategies. Field
Crops Research 67: 95-104.
Gulden, R.H., Shirtliffe,
S.J. & Gordon Thomas, A. 2003. Secondary seed dormancy prolongs persistence
of volunteer canola in western Canada. Weed Science 51(6): 904-913.
Hanley, M.E. & Whiting, M.D. 2005.
Insecticides and arable weeds: Effects on germination and seedling growth. Ecotoxicology 14: 483-490.
Hodgson, J.G. & Mackey, J.M.L. 1986.
The ecological specialization of dicotyledonous families within a local flora:
Some factors constraining optimization of seed size and their possible
evolutionary significance. New Phytologist104:
497-515.
Hong, N.H., Xuan, T.D., Eiji,
T., Hiroyuki, T., Mitsuhiro, M. & Khanh, T.D.
2003. Screening for allelopathic potential of higher plants from Southeast
Asia. Crop Protection 22: 829-836.
Idris, S., Rosnah,
S., Nor, M.Z.M., Mokhtar, M.N. & Abdul Gani, S.S.
2020. Physicochemical composition of different parts of cassava (Manihot
esculenta Crantz) plant. Food Research 4:
78-84.
Ismail, B.S., Tan, P.W., Chuah, T.S. & Nornasuha, Y.
2018. Herbicidal potential of the allelochemicals from Pennisetum purpureum Schumach. on the seedling growth of Paspalum conjugatum. Australian Journal of Crop Science 12(2): 173-177.
Jabran, K. & Chauhan, B.S. 2015. Weed
management in aerobic rice systems. Crop Protection 78: 151-163.
Jafari, L., Moradshahi,
A. & Ghadiri, H. 2011. Allelopathic potential of
rice (Oryza sativa L.) cultivars on barnyard grass (Echinochloa crus-galli). Journal of Agricultural Science
and Technology 1: 853-864.
Jafariehyazdi, E. & Javidfar,
F. 2011. Comparison of allelopathic effects of some brassica species in two
growth stages on germination and growth of sunflower. Plant, Soil and
Environment 57(2): 52-56.
Jaya Suria, A.S.M., Juraimi,
A.S., Rahman, M.M., Man, A.B. & Selamat, A. 2011.
Efficacy and economics of different herbicides in aerobic rice system.
African Journal of Biotechnology 10(41): 8007-8022.
Kamran, M., Ata Cheema, Z., Farooq, M.,
Ali, Q., Anjum, M.Z. & Raza, A. 2019. Allelopathic influence of sorghum
aqueous extract on growth, physiology and photosynthetic activity of maize (Zea mays L.) seedling. Philippine
Agricultural Scientist 102(1): 33-41.
Kobayashi, K. 2004. Factors affecting
phytotoxic activity of allelochemicals in soil. Weed Biology and Management 4:
1-7.
Kordali, S., Cakir, A., Akcin, T.A., Mete, E., Akcin, A.,
Aydin, T. & Kilic, H. 2009. Antifungal and
herbicidal properties of essential oils and n-hexane extracts of Achillea gypsicolaHub-Mor. and Achillea biebersteinii Afan. (Asteraceae). Industrial Crops and
Products 29: 562-570.
Ladhari, A., Gaaliche,
B., Zarrelli, A., Ghannem,
M. & Ben Mimoun, M. 2020. Allelopathic potential
and phenolic allelochemicals discrepancies in Ficus caricaL. cultivars. South African Journal of
Botany 130: 30-44.
Laosinwattana, C., Boonleom,
C., Teerarak, M., Thitavasanta,
S. & Charoenying, P. 2010. Potential allelopathic
effects of Suregada multiflorum and the influence of soil type on its residue’s efficacy. Weed Biology
and Management 10: 153-159.
Li, J., He, S.Y. & Qin, X.D. 2016.
Allelopathic potential and volatile compounds of Manihot esculenta Crantz against weeds. Allelopathy Journal 37(2):
195-206.
Liu, S., Zainuddin,
I.M., Vanderschuren, H., Doughty, J. & Beeching, J.R. 2017. RNAi inhibition of feruloyl CoA
6′-hydroxylase reduces scopoletin biosynthesis
and post-harvest physiological deterioration in cassava (Manihot esculenta Crantz) storage roots. Plant Molecular Biology 94:
185-195.
Mangao, A.M., Arreola, S.L.B., San Gabriel, E.V.
& Salamanez, K.C. 2020. Aqueous extract from
leaves of Ludwigia hyssopifolia (G. Don) exell as potential bioherbicide. Journal
of the Science of Food and Agriculture 100: 1185-1194.
Mao, J., Yang, L., Shi, Y., Hu, J., Piao,
Z., Mei, L. & Yin, S. 2006. Crude extract of Astragalus mongholicusroot inhibits crop seed germination and
soil nitrifying activity. Soil Biology and Biochemistry 38: 201-208.
Moosavi, A., Afshari,
R.T., Asadi, A. & Gharineh,
M.H. 2011. Allelopathic effects of aqueous extract of leaf, stem and root of Sorghum
bicolor on seed germination and seedling growth of Vigna radiata L. Notulae Scientia Biologicae 3(2): 114-118.
Moreira, R.A., Freitas, J.S., da Silva
Pinto, T.J., Schiesari, L., Daam,
M.A., Montagner, C.C. & Espindola,
E.L.G. 2019. Mortality, spatial avoidance and swimming behavior of bullfrog
tadpoles (Lithobates catesbeianus)
exposed to the herbicide diuron. Water, Air, and Soil Pollution 230(6):
1-12.
Nakamaru, M. & Iwasa,
Y. 2000. Competition by allelopathy proceeds in traveling waves: Colicin-immune
strain aids colicin-sensitive strain. Theoretical Population Biology 57:
131-144.
Peterson, M.A., Collavo,
A., Ovejero, R., Shivrain,
V. & Walsh, M.J. 2018. The challenge of herbicide resistance around the
world: A current summary. Pest Management Science 74: 2246-2259.
Pudełko, K., Majchrzak, L. & Narozna, D. 2014. Allelopathic effect of fibre hemp (Cannabis sativa L.) on monocot and dicot
plant species. Industrial Crops and Products 56: 191-199.
Qasem, J.R. 1995. The allelopathic effect of
three Amaranthus spp. (pigweeds) on wheat (Triticum durum). Weed
Research 35(1): 41-49.
Sodaeizadeh, H., Rafieiolhossaini,
M., Havlík, J. & van Damme, P. 2009. Allelopathic
activity of different plant parts of Peganum harmala L. and identification of their growth inhibitors substances. Plant
Growth Regulation 59: 227-236.
Sunil, C.M., Shekara,
B.G., Ashoka, P., Kalyana Murthy, K.N. & Madhukumar, V. 2011. Effect of integrated weed management
practices on aerobic rice (Oryza sativa L.). Research on Crops 12:
626-628.
Take-Tsaba, A.I., Juraimi, A.S. Bin, Yusop,
M.R. Bin, Othman, R.B. & Singh, A. 2018. Weed competitiveness of some
aerobic rice genotypes. International Journal of Agriculture and Biology 20(3):
583-593.
Turk, M.A. & Tawaha,
A.M. 2003. Allelopathic effect of black mustard (Brassica nigraL.) on germination and growth of wild oat (Avena fatuaL.). Crop
Protection 22: 673-677.
Uddin, M.R., Park, S.U., Dayan, F.E. & Pyon, J.Y. 2014. Herbicidal activity of formulated sorgoleone, a natural product of sorghum root exudate. Pest
Management Science 70(2): 252-257.
Xuan, T.D., Shinkichi,
T., Khanh, T.D. & Chung, I.M. 2005. Biological
control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy:
An overview. Crop Protection 24(3): 197-206.
Yi, B., Hu, L., Mei, W., Zhou, K., Wang,
H., Luo, Y., Wei, X. & Dai, H., Utilization, S., Garden, B. & District,
T. 2010. Antioxidant phenolic compounds of cassava (Manihot esculenta)
from Hainan. Molecules 16: 10157-10167.
Yuliyani, E.D., Darmanti,
S. & Hastuti, E.D. 2019. Allelochemical effects
of Chromolaena odorata L. against photosynthetic pigments and stomata of Ageratum conyzoidesL. leaves. Journal of Physics: Conference
Series 1217: 012149.
Zhao, D.L., Atlin,
G.N., Bastiaans, L. & Spiertz,
J.H.J. 2006. Developing selection protocols for weed competitiveness in aerobic
rice. Field Crops Research 97: 272-285.
*Corresponding author; email:
chuahts@uitm.edu.my
|