Sains Malaysiana 50(3)(2022): 929-942
http://doi.org/10.17576/jsm-2021-5103-25
Modeling and Forecasting the Realized Volatility of Bitcoin
using Realized HAR-GARCH-type Models with Jumps and Inverse Leverage Effect
(Memodel dan Meramalkan Kemeruapan Nyata Bitcoin menggunakan Model Nyata Jenis HAR-GARCH dengan Lompatan dan Kesan Tuasan Songsang)
MAMOONA ZAHID1, FARHAT
IQBAL1*, ABDUL RAZIQ1 & NAVEED SHEIKH2
1Department of Statistics, University of Balochistan,
Quetta, Pakistan
2Department of Mathematics, University of Balochistan,
Quetta, Pakistan
Received: 14 February 2021/Accepted: 13 August 2021
ABSTRACT
Using the high-frequency data of
Bitcoin, this study aims to model the time-varying volatility identified in the
residuals of the heterogeneous autoregressive (HAR) model of realized
volatility using the symmetric, asymmetric and long-memory generalized
autoregressive conditional heteroscedastic models (GARCH) models. We further
extended these models by incorporating jumps and continuous components in the
realized volatility estimators and investigating the impact of the inverse
leverage effect. The Diebold Mariano and model confidence set test confirm that
the forecasting performance of HAR-type models can be effectively improved by
these innovations. The long memory HAR-GARCH model with jumps and continuous
components provided better forecasting accuracy for Bitcoin volatility as
compared to other realized volatility models. The findings of this study may
benefit individual investors and risk managers who wish to minimize risks and
diversify their portfolios to maximize profits in Bitcoin’s investment.
Keywords: Bitcoin; HAR-GARCH;
high-frequency data; inverse leverage; realized volatility
ABSTRAK
Dengan menggunakan data frekuensi tinggi Bitcoin, kajian ini bertujuan untuk memodelkan kemeruapan berbeza masa yang dikenal pasti dalam residu model autoregresi heterogen (HAR) daripada kemeruapan nyata menggunakan model simetri, asimetri dan memori panjang teritlak autoregresi bersyarat heteroskedastik (GARCH). Model-model ini terus diperluaskan dengan memasukkan lompatan dan komponen berterusan dalam penaksir kemeruapan nyata dan mengkaji kesan tuasan songsang. Diebold Mariano dan model ujian set keyakinan mengesahkan bahawa prestasi ramalan model jenis HAR dapat ditingkatkan dengan berkesan melalui inovasi ini. Model memori panjang HAR-GARCH dengan lompatan dan komponen berterusan memberikan ketepatan ramalan yang lebih baik untuk kemeruapan Bitcoin berbanding model kemeruapan nyata yang lain. Hasil kajian ini dapat memberi manfaat kepada pelabur individu dan pengurus risiko yang ingin meminimumkan risiko dan mempelbagaikan portfolio mereka untuk memaksimumkan keuntungan dalam pelaburan Bitcoin.
Kata kunci:
Bitcoin; data frekuensi tinggi;
HAR-GARCH; kemeruapan nyata; tuasan songsang
REFERENCES
Ahmed, W.M.A. 2020. Is there a
risk-return trade-off in cryptocurrency markets? The case of bitcoin. Journal of Economics and Business 108:
1-21.
Andersen, T.G. & Bollerslev, T. 1998. Answering the skeptics: Yes, standard
volatility models do provide accurate forecasts. International Economic Review 39(4): 885-905.
Andersen, T.G., Bollerslev,
T. & Diebold, F.X. 2007. Roughing it up: Including jump components in the
measurement, modeling and forecasting of return volatility. The Review of Economics and Statistics 89(4): 701-720.
Andersen, T.G., Bollerslev,
T., Diebold, F.X. & Labys, P. 2003. Modeling and
forecasting realized volatility. Econometrica 71(2):
579-625.
Ardia, D., Bluteau, K. & Rüede, M. 2019. Regime changes in Bitcoin GARCH volatility
dynamics. Finance Research Letters 29:
266-271.
Baillie, R.T., Bollerslev,
T. & Mikkelsen, H.O. 1996. Fractionally integrated generalized
autoregressive conditional heteroskedasticity. Journal of Econometrics 74(1): 3-30.
Barndorff‐Nielsen, O.E. & Shephard, N. 2002a. Econometric
analysis of realized volatility and its use in estimating stochastic volatility
models. Journal of the Royal Statistical
Society. Series B (Statistical Methodology) 64(2): 253-280.
Barndorff‐Nielsen, O.E. & Shephard, N. 2002b. Estimating
quadratic variation using realized variance. Journal of Applied
Econometrics 17(5): 457-477.
Bollerslev, T. 1986. Generalized autoregressive conditional
heteroscedasticity. Journal of Econometrics 31(3): 307-327.
Bollerslev, T., Patton, A.J. & Quaedvlieg,
R. 2016. Exploiting the errors: A simple approach for improved volatility
forecasting. Journal of Econometrics 192(1):
1-18.
Bouri, E., Azzi, G. & Dyhrberg, A.H. 2017. On the return-volatility relationship
in the bitcoin market around the price crash of 2013. Economics 11: 1- 17.
Bouri, E., Gkillas, K., Gupta, R. & Pierdzioch, C. 2021. Forecasting relaized volatility of bitcoin: The role of the trade war. Computational Economics 57(1): 29-53.
Catania, L. & Sandholdt, M. 2019. Bitcoin at high frequency. Journal of Risk and Financial Management 12(36):
1-20.
Cheong, C.W., Cherng,
L.M., Isa, N.M. & Hoong, P.K. 2017. The
HARX-GJR-GARCH skewed-t multipower realized volatility modelling for S&P
500. Sains Malaysiana46(1):
107-116.
Chu, J.S., Chan, S., Nadarajah, S.
& Osterrieder, J. 2017. GARCH modeling of
cryptocurrency. Journal of Risk and
Financial Management 10(4): 1-15.
Chan, K.F., Gray, P. & Campen, B.Y. 2008. A new approach to characterizing and
forecasting electricity price volatility. International
Journal of Forecasting 24(4): 728-743.
Corsi, F., Mittnik, S., Pigorsch, C. & Pigorsch, U.
2008. The volatility of realized volatility. Econometric Review 27(1-3): 46-78.
Corsi, F., Zumbach, G., Muller, U.A.
& Dacorogna, M.M. 2003. Consistent
high‐precision volatility from high‐frequency data. Economic Notes 30(2): 183-204.
Diebold, F.X. & Mariano, R.S.
2002. Comparing predictive accuracy. Journal
of Business & Economic Statistics 20(1): 134-144.
Hansen, P.R., Lunda, A. & Nason, J.M. 2011. The model confidence test. Econometrica 79(2): 453-497.
Haugom, E. 2011. Some stylized facts about high-frequency Nord
Pool forward electricity prices. Journal
of Energy Markets 4(1): 21-49.
Hattori, T. 2020. A forecast
comparison of volatility models using realized volatility: Evidence from the
bitcoin market. Applied Economics Letters 27(7): 591-595.
Hickey, E., Loomis, D.G. & Mohammadi, H. 2012. Forecasting hourly electricity prices
using ARIMAX–GARCH models: An application to MISO hubs. Energy Economics 34(1):
307-315.
Hung, J.C., Liu, H.C. & Yang,
J.J. 2020. Improving the realized GARCH’s volatility forecast for bitcoin with
jump-robust estimators. The North
American Journal of Economics and Finance 52(101165): 1-11.
Katsiampa, P. 2017. Volatility estimation for bitcoin: A comparison
of GARCH model. Economics Letters 158: 3-6.
Kochling, G., Schmidtke, P. & Posch, P.N. 2020. Volatility forecasting accuracy for
bitcoin. Economics Letters 191(108836): 1-17.
Liu, R., Shao, Z., Wei, G. &
Wang, W. 2017. GARCH model with fat-tailed distributions and bitcoin exchange
rate returns. Journal of Accounting
Business and Finance Research 1(1): 71-75.
Lopez, J.A. 2001. Evaluating the
predictive accuracy of volatility models. Journal
of Forecasting 20(2): 87-109.
Naimy, V.Y. & Hayek, M.R. 2018. Modelling and predicting the
bitcoin volatility using GARCH models. International
Journal of Mathematical Modelling and Numerical Optimisation 8(3): 197-215.
Nelson, D.B. 1991. Conditional
heteroskedasticity in asset returns: A new approach. Econometrica 59(2): 347-370.
Osterrieder, J., Lorenz, J. & Strika, M.
2017. Bitcoin and cryptocurrencies- not for the faint-hearted. International Finance and Banking 4(1):
56-94.
Qu, H., Chen, W., Niu, M. & Li, X. 2016. Forecasting realized volatility
in electricity markets using logistic smooth transition heterogeneous
autoregressive models. Energy Economics 54: 68-76.
Qu, H., Duan,
Q. & Niu, M. 2018. Modeling the volatility of
realized volatility to improve volatility forecasts in electricity markets. Energy Economics 74: 767-776.
Stavroyiannis, S. & Babalos, V. 2017.
Dynamic properties of the Bitcoin and the US market. Social Science Research Network http://dx.doi.org/10.2139/ssrn.2966998.
Urquhart, A. 2017. The volatility of
bitcoin. Social Science Research Network http://dx.doi.org/10.2139/ssrn.2921082.
Yu, M. 2019. Forecasting bitcoin
volatility: The role of leverage effect and uncertainty. Physica A: Statistical Mechanics and its
Applications 553(120707): 1-22.
Zahid, M. & Iqbal, F. 2020.
Modeling the volatility of cryptocurrencies: An empirical application of
stochastic volatility models. Sains Malaysiana 49(3): 703-712.
Zhang, H. & Lan, Q. 2014.
GARCH-type model with continuous and jump variation for stock volatility and
its empirical study in China. Mathematical
Problems in Engineering (Special Issue: Nonlinear Problems: Mathematical Modeling, Analyzing, and Computing for
Finance). 2014: Article ID. 386721.
*Corresponding author; email: farhatiqb@gmail.com
|