Sains Malaysiana 50(3)(2022): 929-942

http://doi.org/10.17576/jsm-2021-5103-25

 

Modeling and Forecasting the Realized Volatility of Bitcoin using Realized HAR-GARCH-type Models with Jumps and Inverse Leverage Effect

(Memodel dan Meramalkan Kemeruapan Nyata Bitcoin menggunakan Model Nyata Jenis HAR-GARCH dengan Lompatan dan Kesan Tuasan Songsang)

 

MAMOONA ZAHID1, FARHAT IQBAL1*, ABDUL RAZIQ1 & NAVEED SHEIKH2

 

1Department of Statistics, University of Balochistan, Quetta, Pakistan

  2Department of Mathematics, University of Balochistan, Quetta, Pakistan

 

Received: 14 February 2021/Accepted: 13 August 2021

 

ABSTRACT

Using the high-frequency data of Bitcoin, this study aims to model the time-varying volatility identified in the residuals of the heterogeneous autoregressive (HAR) model of realized volatility using the symmetric, asymmetric and long-memory generalized autoregressive conditional heteroscedastic models (GARCH) models. We further extended these models by incorporating jumps and continuous components in the realized volatility estimators and investigating the impact of the inverse leverage effect. The Diebold Mariano and model confidence set test confirm that the forecasting performance of HAR-type models can be effectively improved by these innovations. The long memory HAR-GARCH model with jumps and continuous components provided better forecasting accuracy for Bitcoin volatility as compared to other realized volatility models. The findings of this study may benefit individual investors and risk managers who wish to minimize risks and diversify their portfolios to maximize profits in Bitcoin’s investment.

 

Keywords: Bitcoin; HAR-GARCH; high-frequency data; inverse leverage; realized volatility

 

ABSTRAK

Dengan menggunakan data frekuensi tinggi Bitcoin, kajian ini bertujuan untuk memodelkan kemeruapan berbeza masa yang dikenal pasti dalam residu model autoregresi heterogen (HAR) daripada kemeruapan nyata menggunakan model simetri, asimetri dan memori panjang teritlak autoregresi bersyarat heteroskedastik (GARCH). Model-model ini terus diperluaskan dengan memasukkan lompatan dan komponen berterusan dalam penaksir kemeruapan nyata dan mengkaji kesan tuasan songsang. Diebold Mariano dan model ujian set keyakinan mengesahkan bahawa prestasi ramalan model jenis HAR dapat ditingkatkan dengan berkesan melalui inovasi ini. Model memori panjang HAR-GARCH dengan lompatan dan komponen berterusan memberikan ketepatan ramalan yang lebih baik untuk kemeruapan Bitcoin berbanding model kemeruapan nyata yang lain. Hasil kajian ini dapat memberi manfaat kepada pelabur individu dan pengurus risiko yang ingin meminimumkan risiko dan mempelbagaikan portfolio mereka untuk memaksimumkan keuntungan dalam pelaburan Bitcoin.

 

Kata kunci: Bitcoin; data frekuensi tinggi; HAR-GARCH; kemeruapan nyata; tuasan songsang

 

REFERENCES

Ahmed, W.M.A. 2020. Is there a risk-return trade-off in cryptocurrency markets? The case of bitcoin. Journal of Economics and Business 108: 1-21.

Andersen, T.G. & Bollerslev, T. 1998. Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. International Economic Review 39(4): 885-905.

Andersen, T.G., Bollerslev, T. & Diebold, F.X. 2007. Roughing it up: Including jump components in the measurement, modeling and forecasting of return volatility. The Review of Economics and Statistics 89(4): 701-720.

Andersen, T.G., Bollerslev, T., Diebold, F.X. & Labys, P. 2003. Modeling and forecasting realized volatility. Econometrica 71(2): 579-625.

Ardia, D., Bluteau, K. & Rüede, M. 2019. Regime changes in Bitcoin GARCH volatility dynamics. Finance Research Letters 29: 266-271.

Baillie, R.T., Bollerslev, T. & Mikkelsen, H.O. 1996. Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 74(1): 3-30.

Barndorff‐Nielsen, O.E. & Shephard, N. 2002a. Econometric analysis of realized volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 64(2): 253-280.

Barndorff‐Nielsen, O.E. & Shephard, N. 2002b. Estimating quadratic variation using realized variance. Journal of Applied Econometrics 17(5): 457-477.

Bollerslev, T. 1986. Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics 31(3): 307-327.

Bollerslev, T., Patton, A.J. & Quaedvlieg, R. 2016. Exploiting the errors: A simple approach for improved volatility forecasting. Journal of Econometrics 192(1): 1-18.

Bouri, E., Azzi, G. & Dyhrberg, A.H. 2017. On the return-volatility relationship in the bitcoin market around the price crash of 2013. Economics 11: 1- 17.

Bouri, E., Gkillas, K., Gupta, R. & Pierdzioch, C. 2021. Forecasting relaized volatility of bitcoin: The role of the trade war. Computational Economics 57(1): 29-53.

Catania, L. & Sandholdt, M. 2019. Bitcoin at high frequency. Journal of Risk and Financial Management 12(36): 1-20.

Cheong, C.W., Cherng, L.M., Isa, N.M. & Hoong, P.K. 2017. The HARX-GJR-GARCH skewed-t multipower realized volatility modelling for S&P 500. Sains Malaysiana46(1): 107-116.

Chu, J.S., Chan, S., Nadarajah, S. & Osterrieder, J. 2017. GARCH modeling of cryptocurrency. Journal of Risk and Financial Management 10(4): 1-15.

Chan, K.F., Gray, P. & Campen, B.Y. 2008. A new approach to characterizing and forecasting electricity price volatility. International Journal of Forecasting 24(4): 728-743.

Corsi, F., Mittnik, S., Pigorsch, C. & Pigorsch, U. 2008. The volatility of realized volatility. Econometric Review 27(1-3): 46-78.

Corsi, F., Zumbach, G., Muller, U.A. & Dacorogna, M.M. 2003. Consistent high‐precision volatility from high‐frequency data. Economic Notes 30(2): 183-204.

Diebold, F.X. & Mariano, R.S. 2002. Comparing predictive accuracy. Journal of Business & Economic Statistics 20(1): 134-144.

Hansen, P.R., Lunda, A. & Nason, J.M. 2011. The model confidence test. Econometrica 79(2): 453-497.

Haugom, E. 2011. Some stylized facts about high-frequency Nord Pool forward electricity prices. Journal of Energy Markets 4(1): 21-49.

Hattori, T. 2020. A forecast comparison of volatility models using realized volatility: Evidence from the bitcoin market. Applied Economics Letters 27(7): 591-595.

Hickey, E., Loomis, D.G. & Mohammadi, H. 2012. Forecasting hourly electricity prices using ARIMAX–GARCH models: An application to MISO hubs. Energy Economics 34(1): 307-315.

Hung, J.C., Liu, H.C. & Yang, J.J. 2020. Improving the realized GARCH’s volatility forecast for bitcoin with jump-robust estimators. The North American Journal of Economics and Finance 52(101165): 1-11.

Katsiampa, P. 2017. Volatility estimation for bitcoin: A comparison of GARCH model. Economics Letters 158: 3-6.

Kochling, G., Schmidtke, P. & Posch, P.N. 2020. Volatility forecasting accuracy for bitcoin. Economics Letters 191(108836): 1-17.

Liu, R., Shao, Z., Wei, G. & Wang, W. 2017. GARCH model with fat-tailed distributions and bitcoin exchange rate returns. Journal of Accounting Business and Finance Research 1(1): 71-75.

Lopez, J.A. 2001. Evaluating the predictive accuracy of volatility models. Journal of Forecasting 20(2): 87-109.

Naimy, V.Y. & Hayek, M.R. 2018. Modelling and predicting the bitcoin volatility using GARCH models. International Journal of Mathematical Modelling and Numerical Optimisation 8(3): 197-215.

Nelson, D.B. 1991. Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59(2): 347-370.

Osterrieder, J., Lorenz, J. & Strika, M. 2017. Bitcoin and cryptocurrencies- not for the faint-hearted. International Finance and Banking 4(1): 56-94. 

Qu, H., Chen, W., Niu, M. & Li, X. 2016. Forecasting realized volatility in electricity markets using logistic smooth transition heterogeneous autoregressive models. Energy Economics 54: 68-76.

Qu, H., Duan, Q. & Niu, M. 2018. Modeling the volatility of realized volatility to improve volatility forecasts in electricity markets. Energy Economics 74: 767-776.

Stavroyiannis, S. & Babalos, V. 2017. Dynamic properties of the Bitcoin and the US market. Social Science Research Network http://dx.doi.org/10.2139/ssrn.2966998.

Urquhart, A. 2017. The volatility of bitcoin. Social Science Research Network http://dx.doi.org/10.2139/ssrn.2921082.

Yu, M. 2019. Forecasting bitcoin volatility: The role of leverage effect and uncertainty. Physica A: Statistical Mechanics and its Applications 553(120707): 1-22.

Zahid, M. & Iqbal, F. 2020. Modeling the volatility of cryptocurrencies: An empirical application of stochastic volatility models. Sains Malaysiana 49(3): 703-712.

Zhang, H. & Lan, Q. 2014. GARCH-type model with continuous and jump variation for stock volatility and its empirical study in China. Mathematical Problems in Engineering (Special Issue: Nonlinear Problems: Mathematical Modeling, Analyzing, and Computing for Finance). 2014: Article ID. 386721.

 

*Corresponding author; email: farhatiqb@gmail.com

 

 

previous