Sains Malaysiana 51(4)(2022): 1123-1130
http://doi.org/10.17576/jsm-2022-5104-14
Aktiviti Antimalaria secara in vitro Kompleks Logam Ligan
Makrosiklik Tetraaza terhadap Strain Plasmodium
falciparum K1
(in
vitro Antimalarial Activity of Metal Complexes of Tetraazamacrocyclic
Ligands against Plasmodium falciparum K1 Strain)
NUR AQILAH
ZAHIRAH NORAZMI1, NUR HAFIZAH MUKHTAR1, AMATUL HAMIZAH ALI1, NURUL HUDA ABD KARIM1,
SITI FAIRUS MOHD YUSOFF1, HANI KARTINI AGUSTAR2, MOHD
RIDZUAN MOHD ABD RAZAK3 & NURUL IZZATY HASSAN1*
1Department
of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Department of Earth Science and Environment, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3Herbal
Medicine Research Centre, Institute for Medical Research, National Institute of
Health (NIH) Complex, Ministry of Health Malaysia, 40170 Shah Alam, Selangor
Darul Ehsan, Malaysia
Received:
27 June 2021/Accepted: 19 August 2021
Abstrak
Malaria
masih lagi kekal menjadi salah satu penyakit endemik yang boleh membawa maut
dan rawatan yang digunakan kini untuk merawat malaria adalah terapi gabungan
artemisinin. Namun begitu, akses kepada rawatan ini adalah sangat terhad dan
memberi kesan besar kepada negara miskin disebabkan kos terapi yang tinggi.
Penilaian aktiviti antimalaria bagi kompleks organologam berasaskan ligan
makroksiklik tetraaza masih kurang meluas dijalankan. Ligan makrosiklik
tetraaza 5,5,7,12,12,14- heksametil-1,4,8,11- tetraazasiklotetradeka-7,14-dienium
bromida, dikomplekskan dengan empat logam peralihan iaitu Cu(II), Pb(II) dan
Ni(II) dan Cd(II). Aktiviti antimalarial secara in vitro ke atas strain parasit Plasmodium
falciparum yang rintang terhadap klorokuina, K1 ditentukan dan dibandingkan
dengan aktiviti antiplasmodial sebatian klorokuina dan artemisinin. Kompleks
[Cd(L)(OAc)]Br- merencat pertumbuhan parasit dengan 50% kepekatan
perencatan berkesan (EC50) dalam julat aktiviti antiplasmodium yang
poten (EC50<1 μM) manakala Cu(L)(OAc)]Br- menunjukkan kesan aktiviti antiplasmodium sederhana (20< EC50<100 μM). Aktiviti kesitotoksikan terhadap
sel mamalia Vero yang ditunjukkan oleh kompleks logam Cd(II) berada dalam julat
sederhana toksik (10 μM
<CC50< 100 μM), manakala, Cu(II), Pb(II) dan Ni(II)
berada dalam julat tidak toksik (CC50>100 μM). Nilai indeks
pemilihan yang tinggi turut ditunjukkan oleh kompleks Cd(II) iaitu 60.5
seterusnya menjadikan kompleks ini berpotensi untuk dibangunkan sebagai agen
antimalaria.
Kata
kunci: Antiplasmodium; in vitro;
kesitotoksikan; makrosiklik tetraaza, Plasmodium
falciparum K1
Abstract
Malaria remains one of the most lethal endemic diseases, and
the treatment used today to treat malaria is artemisinin-based combination
therapy. However, access to this treatment is minimal and has a huge impact on
low-income countries due to the high cost of therapy. The evaluation of
antimalarial activity for metal complexes based on tetraaza macrocyclic ligand
is unlimited. The macrocyclic
5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-7,14-dienium bromide
is complexed with four transition metals, namely Cu(II), Pb(II) and Ni(II) and
Cd(II). in vitro antimalarial
activity on parasite strain Plasmodium
falciparum resistant to chloroquine, K1 is determined and compared to the
antiplasmodial activity of chloroquine and artemisinin compounds. Complex
[Cd(L)(OAc)]Br- inhibits the growth of parasites with 50% effective
inhibition concentration (EC50) within the potent range of
antiplasmodial activity (EC50<1 μM) while Cu(L)(OAc)]Br- shows the effect of activity moderate antiplasmodial (20< EC50<100
μM). The activities of the toxicity of Vero mammalian cells indicated by
the metal complex, Cd(II) are within moderate toxicity range (10 μM <CC50<
100 μM), while Cu(II), Pb(II) and Ni(II) are within the non-toxic range
(CC50>100 μM). The high selection index value is also
indicated by the Cd(II) complex of 60.5, making this complex potentially to be
developed as an antimalarial agent.
Keywords:
Antiplasmodial; in vitro;
cytotoxicity; Plasmodium falciparum K1; tetraaza macrocyclic
REFERENCES
Abiodun,
B.J., Salami, A.T., Matthew, O.J. & Odedokun, S. 2013. Potential impacts of
afforestation on climate change and extreme events in Nigeria. Climate Dynamics 41(2): 277-293.
Ali, A.H., Sudi, S., Shi-Jing, N., Hassan, W.R.M., Basir,
R., Agustar, H.K., Embi, N., Sidek, H.M. & Latip, J. 2021. Dual
anti-malarial and GSK3β-mediated cytokine-modulating activities of
quercetin are requisite of its potential as a plant-derived therapeutic in
malaria. Pharmaceuticals 14(3):
248.
Ali, A.H., Agustar, H.K., Hassan, N.I., Latip, J., Embi, N.
& Sidek, H.M. 2020. Data on antiplasmodial and stage-specific inhibitory
effects of Aromatic (Ar)-Turmerone against Plasmodium
Falciparum 3D7. Data In Brief 33(2020): 106592.
Amoyaw, P.N.A., Pham, K., Cain, A.N., McClain, J.M., Hubin,
T. & Faruk Khan, M.O. 2014. Synthesis of novel tetraazamacrocyclic
bisquinoline derivatives as potential antimalarial agents. Current Organic Synthesis 11(6):
916-921.
Antony, H.A. & Parija, S.C. 2016. Antimalarial drug
resistance: An overview. Tropical
Parasitology 6: 30-41.
Bahl, D., Athar, F., Soares, M.B.P., de Sá, M.S., Moreira,
D.R.M., Srivastava, R.M., Leite, A.C.L. & Azam, A. 2010. Structure-activity
relationships of mononuclear metal-thiosemicarbazone complexes endowed with
potent antiplasmodial and antiamoebic activities. Bioorganic and Medicinal Chemistry 18(18): 6857-6864.
Boudhar, A., Ng, X.W., Loh, C.Y., Chia, W.N., Tan, Z.M., Nosten,
F., Dymock, B.W. & Tan, K.S. 2016. Overcoming chloroquine resistance in
malaria: Design, synthesis, and structure-activity relationships of novel
hybrid compounds. Antimicrobial
Agents and Chemotherapy 60(5): 3076-3089.
Bueno, J.M., Manzano, P., García, M.C., Chicharro, J.,
Puente, M., Lorenzo, M., García, A., Ferrer, S., Gómez, R.M., Fraile, M.T.
& Lavandera, J.L. 2011. Potent antimalarial 4-pyridones with improved
physico-chemical properties. Bioorganic
and Medicinal Chemistry Letters 21(18): 5214-5218.
Burger, A.M. & Fiebig, H.H. 2014. Preclinical Screening for New Anticancer Agents. Handbook of Anticancer
Pharmacokinetics and Pharmacodynamics. New Jersey: Humana Press. pp. 23-38.
da Silva Filho, A.A., Resende, D.O., Fukui, M.J., Santos,
F.F., Pauletti, P.M., Cunha, W.R., Silva, M.L.A., Gregório, L.E., Bastos, J.K.
& Nanayakkara, N.P.D. 2009. In vitro antileishmanial, antiplasmodial and cytotoxic activities of phenolics and
triterpenoids from Baccharis
dracunculifolia DC (Asteraceae). Fitoterapia 80(8): 478-482.
Dar, O., Khan, M.S. & Adagu, I. 2008. The potential use
of methotrexate in the treatment of falciparum malaria: in vitro assays against sensitive and multidrug-resistant
Falciparum strains. Japanese Journal
of Infectious Diseases 61(3): 210-211.
Fairhurst, R.M. & Dondorp, A.M. 2016.
Artemisinin-resistant Plasmodium
falciparum malaria. Microbiology
Spectrum 4(3): 10.1128/microbiolspec.EI10-0013-2016
Fitch, C.D. 1998. Involvement of heme in the antimalarial
action of chloroquine. Transactions
of the American Clinical and Climatological Association 109: 97.
Ginsburg, H., Famin, O., Zhang, J. & Krugliak, M. 1998.
Inhibition of glutathione-dependent degradation of heme by chloroquine and
amodiaquine as a possible basis for their antimalarial mode of action. Biochemical Pharmacology 56(10):
1305-1313.
Hossain, M.F., Amoyaw, P.N.A., Saluja, H.S. & Khan,
F.M.O. 2016. Evaluation of the physicochemical properties of a novel
antimalarial drug lead, cyclen bisquinoline. Modern Chemistry and Applications 4(2): 1000181.
Hubin, T.J., Walker, A.N., Davilla, D.J., Freeman, T.N.C.,
Epley, B.M., Hasley, T.R., Amoyaw, P.N., Jain, S., Archibald, S.J., Prior, T.J.
& Krause, J.A. 2019. Tetraazamacrocyclic derivatives and their metal
complexes as antileishmanial leads. Polyhedron 163: 42-53.
Hubin, T.J., Amoyaw, P.N.A., Roewe, K.D., Simpson, N.C.,
Maples, R.D., Freeman, T.N.C., Cain, A.N., Le, J.G., Archibald, S.J., Khan,
S.I. & Tekwani, B.L. 2014. Synthesis and antimalarial activity of metal
complexes of cross-bridged tetraazamacrocyclic ligands. Bioorganic and Medicinal Chemistry 22(13): 3239-3244.
Hussin, N., Lim, Y.A.L., Goh, P.P., William, T., Jelip, J.
& Mudin, R.N. 2020. Updates on malaria incidence and profile in Malaysia
from 2013 to 2017. Malaria Journal 19(1): 55.
Kapishnikov, S., Weiner, A., Shimoni, E., Guttmann, P.,
Schneider, G., Dahan-Pasternak, N., Dzikowski, R., Leiserowitz, L. &
Elbaum, M. 2012. Oriented nucleation of hemozoin at the digestive vacuole
membrane in Plasmodium falciparum. Proceedings of the National Academy of
Sciences 109(28): 11188-11193.
Ke, H., Sigala, P.A., Miura, K., Morrisey, J.M., Mather,
M.W., Crowley, J.R., Henderson, J.P., Goldberg, D.E., Long, C.A. & Vaidya,
A.B. 2014. The heme biosynthesis pathway is essential for Plasmodium falciparum development in mosquito stage but not in
blood stages. Journal of Biological
Chemistry 289(50): 34827-34837.
Kiremire, E.M.R., Chibale, K., Rosenthal, P.J., Daniel,
L.S., Negonga, A.M. & Munyolo, F.M. 2007. Metal complexes with high
biological activity against chloroquine resistant strain of Plasmodium falciparum parasite. Biosciences Biotechnology Research Asia 4: 399-402.
Kumar, N., Khan, S.I., Sharma, M., Atheaya, H. & Rawat,
D.S. 2009. Iodine-catalyzed one-pot synthesis and antimalarial activity
evaluation of symmetrically and asymmetrically substituted 3, 6-diphenyl [1, 2,
4, 5] tetraoxanes. Bioorganic and
Medicinal Chemistry Letters 19(6): 1675-1677.
Kumar Sharma, G., Yogi, A., Gaur, K. & Dashora, A. 2015.
A review on antimalarial drug. International
Journal of Basic Clinical Pharmacy and Research 1(1): 1-15.
McCarthy, J.S., Rückle, T., Djeriou, E., Cantalloube, C.,
Ter-Minassian, D., Baker, M., O’Rourke, P., Griffin, P., Marquart, L., van
Huijsduijnen, R.H. & Möhrle, J.J. 2016. A phase II pilot trial to evaluate
safety and efficacy of ferroquine against early Plasmodium falciparum in an
induced blood-stage malaria infection study. Malaria Journal 15(1): 1-9.
Monti, D., Vodopivec, B., Basilico, N., Olliaro, P. &
Taramelli, D. 1999. A novel endogenous antimalarial: Fe (II)-protoporphyrin
IXα (heme) inhibits hematin polymerization to β-hematin (malaria
pigment) and kills malaria parasites. Biochemistry 38(28): 8858-8863.
Mosmann, T. 1983. Rapid colorimetric assay for cellular
growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods 65(1):
55-63.
Radfar, A., Méndez, D., Moneriz, C., Linares, M.,
Marín-García, P., Puyet, A., Diez, A. & Bautista, J.M. 2009. Synchronous
culture of Plasmodium falciparum at
high parasitemia levels. Nature
Protocols 4(12): 1899-1915.
Sarr, S.O., Perrotey, S., Fall, I., Ennahar, S., Zhao, M.,
Diop, Y.M., Candolfi, E. & Marchioni, E. 2011. Icacina senegalensis (Icacinaceae), traditionally used for the
treatment of malaria, inhibits in vitro Plasmodium falciparum growth without
host cell toxicity. Malaria Journal 10: 85.
Stringer, T., Quintero, M.A.S., Wiesner, L., Smith, G.S.
& Nordlander, E. 2019. Evaluation of PTA-derived ruthenium (II) and iridium
(III) quinoline complexes against chloroquine-sensitive and resistant strains
of the Plasmodium falciparum malaria
parasite. Journal of Inorganic
Biochemistry 191: 164-173.
Wiji Prasetyaningrum,
P., Bahtiar, A. & Hayun, H. 2018. Synthesis and cytotoxicity evaluation of
novel asymmetrical mono-carbonyl analogs of curcumin (AMACs) against Vero,
HeLa, and MCF7 Cell Lines. Scientia
Pharmaceutica 86(2): 25.
Yamin, B.M., Kadir, A. & Yusoff, S.F. 2015. Complexation
of 5, 5, 7, 12, 12, 14-hexamethyl-1, 4, 8, 11-tetraazayclotetradeca-7,
14-dienium bromide with copper acetate in methanol and aqueous solutions. Indonesian Journal of Chemical Research 2(2): 171-175.
Yong, A.S.J., Navaratnam, P., Kadirvelu, A. & Pillai, N.
2018. Re-emergence of malaria in Malaysia: A review article. Open Access Library Journal 5(2): 1-16.
Yusoff, L.M., Yusoff, S.F.M., Ismail, W. & Yamin, B.M.
2014. Synthesis and characterization of Ni (II) complex with 5, 5, 7, 12, 12,
14-hexamethyl-1, 4, 8, 11-tetraazacyclotetradeca-7, 14-dienium bromide.
In AIP Conference Proceedings 1614(1):
358-361.
Yusoff, S.F.M., Huddin, A.A.S., Yusoff, L.M., Yamin, B.M.
& Ong, W.L. 2015. Synthesis, characterization, and antibacterial activity
of Cu (II), Ni (II), and Zn (II) complexes of 14-membered macrocyclictetraaza
ligand. Oriental Journal of
Chemistry 31(3): 1751.
Zakaria, N.H., Hassan, N.I. & Wai, L.K. 2020. Molecular
docking study of the interactions between Plasmodium falciparum lactate dehydrogenase and 4-aminoquinoline hybrids. Sains Malaysiana 49(8): 1905-1913.
*Corresponding
author; email: drizz@ukm.edu.my
|