Sains Malaysiana 51(4)(2022): 1111-1121

http://doi.org/10.17576/jsm-2022-5104-13

 

Analysis of Antioxidant Properties and Volatile Compounds of Honeys from Different Botanical and Geographical Origins

 (Analisis Antioksidan dan Sebatian Meruap Madu daripada Asal Usul Botani dan Geografi yang Berbeza)

 

KASFUL ASRA SAKIKA1, MOHD ZUWAIRI SAIMAN2,3*, NOR HISAM ZAMAKSHSHARI3, IDRIS ADEWALE AHMED3, MUHAMMAD NAZIL AFIQ NASHARUDDIN3 & NAJIHAH MOHD HASHIM3,4*

 

1Institute for Advanced Studies, Universiti Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

2Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

3Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

4Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 5 May 2021/Accepted: 20 August 2021

 

ABSTRACT

Honey has been consumed since ancient time due to its nutritional and therapeutic values. Studies showed that honey possesses antioxidant properties which can inhibit oxidation and cell damage in the body. However, the chemical contents and antioxidant properties of honeys are varied, depending on botanical and geographical origins of honey. In this study, we analysed the total phenolic content (TPC), total flavonoid content (TFC), antioxidant properties (DPPH, ABTS, FRAP and TAOC) and volatile profiles of several commercial honeys originated from Malaysia, Turkey, and Yemen. The results showed that sample H4 (Pine honey) from Turkey was the highest in TPC (0.84 µg GAE/mg honey), ABTS (63.15% inhibition) and FRAP (0.45 µg FeSO4 equivalent/mg honey) values, while H2 (Acacia honey) from Malaysia showed the highest values in TFC (0.11 µg quercetin equivalent/mg honey) and DPPH (45.13 mg/mL IC50). Meanwhile, H5 (Marai honey) from Yemen recorded the highest TAOC value (24.14 µg ascorbic acid equivalent/mg honey). Twenty-four volatile compounds were identified using gas chromatography-mass spectrometry (GC-MS), among others are 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl, linoleic acid ethyl ester, 2,5-dimethyl-4-hydroxy-3(2H)-furanone, and 2,4-dihydroxy-2,5-dimethyl-3(2H)-furan-3-one which contribute to chemical characteristics of certain honeys. In regards to the TPC, TFC, and antioxidant assays, the honey samples were ranked based on the chemical properties level as follows: H4 (Pine honey) > H2 (Acacia honey) > H7 (Kelulut 2) > H3 (Kelulut 1) > H6 (Sumar honey) > H1 (Tualang honey) > H5 (Marai honey). This finding increases the knowledge of the chemical compositions, volatile compounds, and antioxidant activities of several commercial honeys derived from different botanical and geographical origins.

 

Keywords: Antioxidant properties; flavonoids; honeybee; phenolics; stingless bee; volatile compounds

 

ABSTRAK

Madu telah digunakan sejak zaman dahulu disebabkan nilai nutrisi dan terapeutiknya. Kajian menunjukkan bahawa madu mempunyai kandungan antioksidan yang boleh menghalang pengoksidaan dan kerosakan sel dalam badan. Walau bagaimanapun, kandungan kimia dan antioksidan madu adalah berbeza-beza, bergantung kepada punca botani dan geografi madu tersebut. Dalam kajian ini, kami telah menganalisis jumlah kandungan fenol (TPC), jumlah kandungan flavonoid (TFC), sifat antioksidan (DPPH, ABTS, FRAP dan TAOC) dan profil sebatian meruap daripada beberapa madu komersial yang berasal dari Malaysia, Turki dan Yaman. Keputusan kajian menunjukkan bahawa H4 (madu Pain) dari Turki adalah paling tinggi bagi TPC (0.84 µg GAE/mg madu), ABTS (63.15% penghambatan) dan FRAP (0.45 µg FeSO4/mg madu), manakala H2 (madu Akasia) dari Malaysia menunjukkan nilai tertinggi dalam TFC (0.11 µg kuersetin/mg madu) dan DPPH (45.13 mg/mL IC50). Sementara itu, H5 (madu Marai) dari Yaman mencatatkan nilai TAOC tertinggi (24.14 µg asid askorbik/mg madu). Dua puluh empat sebatian meruap telah dikenal pasti menggunakan kromatografi gas-spektrometri jisim (GC-MS), antara lain adalah 4H-piran-4-one, 2,3-dihidro-3,5-dihidroksi-6-metil, asid linolik etil ester, 2,5-dimetil-4-hidroksi-3(2H)-furanon, dan 2,4-dihidroksi-2,5-dimetil-3(2H)-furan-3-one yang menyumbang kepada ciri-ciri kimia bagi madu-madu tertentu. Berdasarkan kepada TPC, TFC dan ujian antioksidan, sampel madu disusun mengikut tahap sifat kimia seperti berikut: H4 (madu Pain) > H2 (madu Akasia) > H7 (Kelulut 2) > H3 (Kelulut 1) > H6 (madu Sumar) > H1 (madu Tualang) > H5 (madu Marai). Hasil kajian ini dapat menambah pengetahuan tentang komposisi kimia, sebatian meruap dan aktiviti antioksida bagi beberapa madu komersial yang berasal daripada punca botani dan geografi yang berbeza.

 

Kata kunci: Fenol; flavonoid; kelulut; lebah madu; sebatian meruap; sifat antioksidan

 

REFERENCES

Aljohar, H.I., Maher, H.M., Albaqami, J., Al-Mehaizie, M., Orfali, R., Orfali, R. & Alrubia, S. 2018. Physical and chemical screening of honey samples available in the Saudi market: An important aspect in the authentication process and quality assessment. Saudi Pharmaceutical Journal 26(7): 932-942.

Arawwawala, L.D.A.M. & Hewageegana, H.G.S.P. 2017. Health benefits and traditional uses of honey: A review. Journal of Apitherapy 2(1): 9-14.

Asadi-Pooya, A.A., Pnjehshahin, M.R. & Beheshti, S. 2003. The antimycobacterial effect of honey: An in vitro study. Rivista Di Biologia96(3): 491-495.

Awasum, C.A., Fotzo, S.L.M., Ndukum, J.A., Genesis, C.W.D. & Zoli, A. 2015. Gas chromatography-mass spectroscopy analysis and chemical composition of Ngaoundere, Cameroon Honey. American Journal of Bioscience and Bioengineering 3(5): 33-36.

Beppu, Y., Komura, H., Izumo, T., Horii, Y., Shen, J., Tanida, M., Nakashima, T., Tsuruoka, N., & Nagai, K. 2012. Identificaton of 2,3-dihydro-3,5-dihydroxy-6-methyl-4 H -pyran-4-one isolated from Lactobacillus pentosus strain S-PT84 culture supernatants as a compound that stimulates autonomic nerve activities in rats. Journal of Agricultural and Food Chemistry 60(44): 11044-11049.

Bertoncelj, J., Doberšek, U., Jamnik, M. & Golob, T. 2007. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chemistry 105(2): 822-828.

Biluca, F.C., de Gois, J.S., Schulz, M., Braghini, F., Gonzaga, L.V., Maltez, H.F., Rodrigues, E., Vitali, L., Micke, G.A., Borges, D.L.G., Costa, A.C.O. & Fett, R. 2017. Phenolic compounds, antioxidant capacity and bioaccessibility of minerals of stingless bee honey (Meliponinae). Journal of Food Composition and Analysis 63: 89-97.

Biluca, F.C., Braghini, F., Gonzaga, L.V., Costa, A.C.O. & Fett, R. 2016. Physicochemical profiles, minerals and bioactive compounds of stingless bee honey (Meliponinae). Journal of Food Composition and Analysis 50: 61-69.

Bin, Q. & Peterson, D.G. 2016. Identification of bitter compounds in whole wheat bread crumb. Food Chemistry 203: 8-15.

Bogdanov, S. 2012. Honey as nutrient and functional food. Proteins 1100: 1400-2700.

Čechovská, L., Cejpek, K., Konečný, M. & Velíšek, J. 2011. On the role of 2,3-dihydro-3,5-dihydroxy-6-methyl-(4H)-pyran-4-one in antioxidant capacity of prunes. European Food Research and Technology 233(3): 367-376.

Cheung, Y., Meenu, M., Yu, X. & Xu, B. 2019. Phenolic acids and flavonoids profiles of commercial honey from different floral sources and geographic sources. International Journal of Food Properties 22(1): 290-308.

Chukwu, C., Omaka, O. & Aja, P. 2017. Characterization of 2,5-dimethyl-2,4-dihydroxy-3(2H) furanone, a flavourant principle from Sysepalum dulcificum. Natural Products Chemistry and Research 5(08): 1-9.

Cianciosi, D., Forbes-Hernández, T.Y., Afrin, S., Gasparrini, M., Reboredo-Rodriguez, P., Manna, P.P., Zhang, J., Lamas, L.B., Flórez, S.M., Toyos, P.A., Quiles, J.L., Giampieri, F. & Battino, M. 2018. Phenolic compounds in honey and their associated health benefits: A review. Molecules 23(9): 1-20.

Ciulu, M., Spano, N., Pilo, M. & Sanna, G. 2016. Recent advances in the analysis of phenolic compounds in unifloral honeys. Molecules 21(4): 451.

Eteraf-Oskouei, T. & Najafi, M. 2013. Traditional and modern uses of natural honey in human diseases: A review. Iranian Journal of Basic Medical Sciences 16(6): 731-742.

Gašić, U., Kečkeš, S., Dabić, D., Trifković, J., Milojković-Opsenica, D., Natić, M. & Tešić, Z. 2014. Phenolic profile and antioxidant activity of Serbian polyfloral honeys. Food Chemistry 145: 599-607.

Gupta, R.K., Reybroeck, W., Van Veen, J.W. & Gupta, A. 2014. Beekeeping for Poverty Alleviation and Livelihood Security: Vol. 1: Technological Aspects of Beekeeping. Netherlands: Springer. p. 665.

Habib, H.M., Al Meqbali, F.T., Kamal, H., Souka, U.D. & Ibrahim, W.H. 2014. Bioactive components, antioxidant and DNA damage inhibitory activities of honeys from arid regions. Food Chemistry 153: 28-34.

Hwang, I.G., Kim, H.Y., Woo, K.S., Lee, S.H., Lee, J. & Jeong, H.S. 2013. Isolation and identification of the antioxidant DDMP from heated pear (Pyrus pyrifolia Nakai). Preventive Nutrition and Food Science 18(1): 76-79.

Jan, S., Khan, M.R., Rashid, U. & Bokhari, J. 2013. Assessment of antioxidant potential, total phenolics and flavonoids of different solvent fractions of Monotheca buxifolia fruit. Osong Public Health and Research Perspectives 4(5): 246-254.

Kanzler, C., Haase, P.T., Schestkowa, H. & Kroh, L.W. 2016. Antioxidant properties of heterocyclic intermediates of the maillard reaction and structurally related compounds. Journal of Agricultural and Food Chemistry 64(41): 7829-7837.

Kaškoniene, V. & Venskutonis, P.R. 2010. Floral markers in honey of various botanical and geographic origins: A review. Comprehensive Reviews in Food Science and Food Safety 9(6): 620-634.

Khalil, M.I., Moniruzzaman, M., Boukraâ, L., Benhanifia, M., Islam, M.A., Islam, M.N., Sulaiman, S.A. & Gan, S.H. 2012. Physicochemical and antioxidant properties of Algerian honey. Molecules 17(9): 11199-11215.

Manyi-Loh, C.E., Ndip, R.N. & Clarke, A.M. 2011. Volatile compounds in honey: A review on their involvement in aroma, botanical origin determination and potential biomedical activities. International Journal of Molecular Sciences 12(12): 9514-9532.

Michener, C. 2013. The Meliponini. In Pot-Honey: A Legacy of Stingless Bees. Netherlands: Springer. pp. 3-17.

Mohamad Shah, N.S., Gan, S.H., Halim, A.S., Shah, N.S.M. & Sukari, H.A. 2013. Analysis of volatile compounds of Malaysian Tualang (Koompassia excelsa) honey using gas chromatography mass spectrometry. African Journal of Traditional, Complementary and Alternative Medicines 10(2): 180-188.

Moniruzzaman, M., An, C.Y., Rao, P.V., Hawlader, M.N.I., Mohd Azlan, S.A., Sulaiman, S.A. & Gan, S.H. 2014. Identification of phenolic acids and flavonoids in monofloral honey from Bangladesh by high performance liquid chromatography: Determination of antioxidant capacity. BioMed Research International 2014: 737490.

Moniruzzaman, M., Khalil, M.I., Sulaiman, S.A. & Gan, S.H. 2013. Physicochemical and antioxidant properties of Malaysian honeys produced by Apis cerana, Apis dorsata and Apis mellifera. BMC Complementary and Alternative Medicine 13(43): 1-12.

Park, S.Y., Seetharaman, R., Ko, M.J., Kim, D.Y., Kim, T.H., Yoon, M.K., Kwak, J.H., Lee, S.J., Bae, Y.S. & Choi, Y.W. 2014. Ethyl linoleate from garlic attenuates lipopolysaccharide-induced pro-inflammatory cytokine production by inducing heme oxygenase-1 in RAW264.7 cells. International Immunopharmacology 19(2): 253-261.

Pattamayutanon, P., Angeli, S., Thakeow, P., Abraham, J., Disayathanoowat, T. & Chantawannakul, P. 2017. Volatile organic compounds of Thai honeys produced from several floral sources by different honey bee species. PLoS ONE 12(2): 1-15.

Pećanac, M., Janjić, Z., Komarcević, A., Pajić, M., Dobanovacki, D. & Misković, S.S. 2013. Burns treatment in ancient times. Medicinski Pregled 66(5-6): 263-267.

Phongpaichit, S., Nikom, J., Rungjindamai, N., Sakayaroj, J., Hutadilok-Towatana, N., Rukachaisirikul, V. & Kirtikara, K. 2007. Biological activities of extracts from endophytic fungi isolated from Garcinia plants. FEMS Immunology and Medical Microbiology 51(3): 517-525.

Prommaban, A., Utama-ang, N., Chaikitwattana, A., Uthaipibull, C. & Srichairatanakool, S. 2019. Linoleic acid-rich guava seed oil: Safety and bioactivity. Phytotherapy Research 33(10): 2749-2764.

Purbafrani, A., Hashemi, S.A.G., Bayyenat, S., Moghaddam, H.T. & Saeidi, M. 2014. The benefits of honey in Holy Quran. International Journal of Pediatrics 2(3): 67-73.

Rahal, A., Kumar, A., Singh, V., Yadav, B., Tiwari, R., Chakraborty, S. & Dhama, K. 2014. Oxidative stress, prooxidants, and antioxidants: The interplay. BioMed Research International 2014: 761264.

Ranneh, Y., Ali, F., Zarei, M., Akim, A.M., Hamid, H.A. & Khazaai, H. 2018. Malaysian stingless bee and Tualang honeys: A comparative characterization of total antioxidant capacity and phenolic profile using liquid chromatography-mass spectrometry. LWT-Food Science and Technology 89: 1-9.

Salonen, A., Virjamo, V., Tammela, P., Fauch, L. & Julkunen-Tiitto, R. 2017. Screening bioactivity and bioactive constituents of Nordic unifloral honeys. Food Chemistry 237: 214-224.

Schwab, W. 2013. Natural 4-hydroxy-2,5-dimethyl-3(2H)-furanone (Furaneol®). Molecules 18(6): 6936-6951.

Seisonen, S., Kivima, E. & Vene, K. 2015. Characterisation of the aroma profiles of different honeys and corresponding flowers using solid-phase microextraction and gas chromatography-mass spectrometry/olfactometry. Food Chemistry 169: 34-40.

Shapla, U.M., Solayman, M., Alam, N., Khalil, M.I. & Gan, S.H. 2018. 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: Effects on bees and human health. Chemistry Central Journal 12(35): 1-18.

Silva, I.A.A., Silva, T.M.S., Camara, C.A., Queiroz, N., Magnani, M., Novais, J.S., Soledade, L.E.B., Lima, E.D.O., Souza, A.L. & Souza, A.G. 2013. Phenolic profile, antioxidant activity and palynological analysis of stingless bee honey from Amazonas, Northern Brazil. Food Chemistry 141(4): 3252-3258.

Sung, W.S., Jung, H.J., Park, K., Kim, H.S., Lee, I.S. & Lee, D.G. 2007. 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF); antimicrobial compound with cell cycle arrest in nosocomial pathogens. Life Sciences 80(6): 586-591.

Whelan, J. & Fritsche, K. 2013. Linoleic acid. Advances in Nutrition 4(3): 311-312.

Wong, J.M. & Kern, M. 2011. Miracle fruit improves sweetness of a low-calorie dessert without promoting subsequent energy compensation. Appetite 56(1): 163-166.

Zhang, Y., Yin, X., Xiao, Y., Zhang, Z., Li, S., Liu, X., Zhang, B., Yang, X., Grierson, D., Jiang, G., Klee, H.J. & Chen, K. 2018. An ethylene response factor-MYB transcription complex regulates furaneol biosynthesis by activating quinone oxidoreductase expression in strawberry. Plant Physiology 178(1): 189-201.

 

*Corresponding authors; email: zuwairi@um.edu.my

 

 

 

previous