Sains Malaysiana 51(4)(2022): 1245-1259
http://doi.org/10.17576/jsm-2022-5104-23
Recycle Glass Waste as a Host for
Solidification of Oil Sludge
(Sisa
Kaca Kitar Semula sebagai Perumah untuk Pemejalan Enap Cemar Minyak)
NUR SYUHADA IZZATI RUZALI1,
SYAZWANI MOHD FADZIL1,2*, WOOYONG UM3,4, MOHD IDZAT IDRIS1,2 & ROHYIZA BA’AN5
1Department of Applied Physics,
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor Darul Ehsan, Malaysia
2Nuclear Technology Research Centre,
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor Darul Ehsan, Malaysia
3Division of Advanced Nuclear
Engineering, Pohang University of Science and Technology (POSTECH), 77
Chongam-lo, Nam-gu, Pohang 790-784, Republic of Korea
4Division of
Environmental Science and Engineering, Pohang University of Science and
Technology (POSTECH), 77 Chongam-lo, Nam-gu, Pohang 790-784, Republic of Korea
5Waste and Environmental Technology
Division, Malaysian Nuclear Agency, 43000 Kajang, Selangor Darul Ehsan,
Malaysia
Received:
9 June 2021/Accepted: 7 September 2021
Abstract
The production of oil sludge per
year is more than 1 billion tonne that mainly generated from the production,
refinery, storage, and transportation of petroleum. Disposal of oil sludge had
been a great issue since the waste consists of highly concentrated of Natural
Occurring Radioactive Material (NORM). Therefore, to overcome this problem,
this study aims to investigate used and recycle borosilicate glass as a host
for solidification of oil sludge. The oil sludge and glass host were mixed into
different compositions, melted at high temperature (1,100 °C -1,200 °C) for 1 h
in alumina crucible and rapidly cooling in the room temperature, by reducing
the radioactivity levels of NORM. This study found out that, the optimum waste
loading was obtained at a range of 20-25 wt% of oil sludge and 75-80 wt% of the
glass host at 1,200 °C. All the glass waste was produced as an amorphous phase
material with small amount of crystalline phase such as SiO2, Ba4-Al2-O7,
AlPO4, Al2O3 and Fe3Zn10,
which observed to be appeared during the cooling process. The major elements of
the glass waste were found to be distributed uniformly based on energy
dispersive X-ray spectroscopy (EDX) mapping. Furthermore, the dissolution rate
of indicator element increased due to the increase of pH solution, while the
normalized releases of B, Si, and Na during product consistency tests were low
and below the standard glass limit, which shows high durability of the glass
due to lower release of glass elements. Therefore, this study emphasized the suitability
of recycle borosilicate glass as a host for immobilization of oil sludge prior
for disposal, while deploying high temperature technology.
Keywords: Borosilicate glass;
hazardous waste; naturally occurring radioactive material (NORM); oil sludge;
vitrification process
Abstrak
Penghasilan enap cemar minyak
daripada industri petroleum adalah melebihi 1 bilion tan pada setiap tahun
semasa proses penghasilan, penyulingan, penyimpanan dan pengangkutan. Pelupusan
enap cemar minyak telah menjadi isu besar kerana sisa enap cemar mengandungi
unsur yang berbahaya. Oleh itu, bagi mengatasi masalah ini, enap cemar minyak
dan sisa kaca dicampur menerusi beberapa komposisi yang berbeza dan dipanaskan
pada suhu yang tinggi (1,100 °C -1,200 °C) selama 1 jam dan disejukkan pada
suhu bilik bagi mengurangkan bahan berbahaya seperti radionuklid tabii (NORM).
Keputusan kajian mendapati muatan sisa yang optimum adalah dalam julat 20-25
bt% enap cemar dan 75-80 bt% perumah kaca yang dipanaskan pada suhu 1,200 °C.
Kesemua bentuk sisa kaca akhir mempunyai fasa amorfus dengan fasa hablur yang
kecil seperti SiO2, Ba4-Al2-O7,
AlPO4, Al2O3 dan Fe3Zn10,
yang mungkin terhasil semasa proses penyejukan. Unsur utama tertabur dengan
sekata menerusi pemetaan spektroskopi sinar-X penyebaran tenaga (EDX). Selain
itu, kadar larutan unsur penunjuk meningkat dengan peningkatan pH larutan,
manakala pembebasan ternormal oleh B, Si, dan Na semasa ujian larut lesap
adalah rendah dan di bawah had piawaian kaca, yang menunjukkan ketahanan kaca yang
tinggi disebabkan pelepasan unsur kaca yang rendah. Oleh itu, kajian ini
menekankan kesesuaian kaca borosilikat yang dikitar semula untuk digunakan
sebagai perumah untuk memegunkan sisa enap cemar minyak sebelum dilupuskan
dengan menggunakan teknologi bersuhu tinggi.
Kata kunci: Enap cemar minyak; kaca
borosilikat; proses pengacaan; radionuklid tabii (NORM); sisa berbahaya
REFERENCES
Abdel-Sabour, M.F. 2015. NORM in
waste derived from oil and gas production. In Middle East Waste Management Summit. Promedia International Limited, Cairo. p. 25.
Abu-baker,
A.O.K., Elfaki, A.E., Osman, A.H., Elfaki, A.A.A. & Elobaid, R.A. 2016.
Measurement of activity concentration absorbed dose rate and annual effective
dose of natural occurring radioactive material (NORM) in samples encountered
during oil & gas industry. IOSR
Journal of Applied Physics 8(5): 89-95.
Aida, I.S.M., Rozita, O. &
Salmiaton, A. 2012. Vitrification of petrochemical sludge containing heavy
metal. SEGi Review 5(1): 89-94.
Aja, O.C., Al-Kayiem, H.H., Zewge,
M.G. & Joo, M.S. 2016. Overview of hazardous waste management status in
Malaysia. In Management of Hazardous
Wastes, edited by Saleh, H.E.M. & Rahman, R.A. London: InTech
Publisher.
Al-Ghamdi, R.A. & Sitepu, H.
2018. Characterization of sludge deposits from refineries and gas plants: Prerequisite
result requirements to facilitate chemical cleaning of the particular
equipment. International Journal of
Corrosion 2018: Article ID. 4121506.
Ali,
M.M.M., Zhao, H., Li, Z. & Maglas, N.N.M. 2019. Concentrations of TENORMs
in the petroleum industry and their environmental and health effects. RSC Advances 9(67): 39201-39229.
Ali, A.M., Abu-Hassan, M.A.,
Ibrahim, R.R.K., Zaini, M.A.A., Abdulkarim, B.I., Hussein, A.S., Su, S.M. &
Mohd Halim, M.A.I. 2017a. Characterization of petroleum sludge from refinery
industry biological wastewater treatment unit. The International Journal of Engineering and Science 6(9) 61-65.
Ali, K.K., Shafik, S.S. &
Husain, H.A. 2017b. Radiological assessment of NORM resulting from oil and gas
production processing in south Rumaila oil field, southern Iraq. Iraq Journal of Science 58(2C):
1037-1050.
Allam, K.A. & Bakr, W.F. 2015.
Assessment of the exposure dose during removal of TENORM sludge from crude oil
storage tanks. Arab Journal of Nuclear
Science and Applications 48(2): 90-93.
ASTM C-1285-14. 2002. Standard Test Methods for Determining
Chemical Durability the Product Consistency Test (PCT). West Conshohocken:
American Society for Testing and Materials (ASTM).
Awwad, N.S., Attallah, M.F.,
El-Afifi, E.M., Ibrahim, H.A. & Aly, H.F. 2015. Overview about different
approaches of chemical treatment of NORM and TE-NORM produced Oil exploitation.
In Advances in Petrochemicals, edited by
Patel, V. London: InTech Publisher. pp. 85-113.
Bakr, M.A., Elattar, A.L., Salama,
S., Ahmed, M.H. & Zahran, E.M. 2018. NAA for trace elemental analysis of
sludge samples from different oil sites in the Egyptian eastern desert. Journal of Radiation and Nuclear Application 3(3): 163-170.
Bakr, W.F. 2010. Assessment of
radiological impact of oil refining industry.
Journal of Environmental Radioactivity 101(3): 237-243.
Bakri,
J. & Siregar, R. 2003. Radiation and radioactivity levels survey of
naturally occurring radioactive materials (NORM) at PT Caltex Pacific
Indonesia. In Proceedings of the Seminar
on Environmental and Radiation Safety Aspect at Non-Nuclear Industry 42:
15-25.
Bednarek, J., Ptacek, P., Svec, J.,
Soukal, F. & Parizek, L. 2016. Inhibition of hydrogen evolution in
aluminium-phosphate refractory binders. Procedia
Engineering 151: 87-93.
Canoba, A.C., Gnoni, G.A. &
Truppa, W.A. 2007. NORM measurements in the oil and gas industry in Argentina.
In 5th International Symposium
on Naturally Occurring Radioactive Material. p. 33.
Chen, S., Shu, X., Tang, H., Mao,
X., Xu, C. & Lu, X. 2019. Microwave sintering of uranium-contaminated soil
for nuclear test and chemical stability. Ceramics
International 45(10): 13334-13339.
Darko,
E.O., Kpeglo, D.O., Akaho, H., Schandorf, C., Adu, P., Faanu, A., Abankwah, E.,
Lawluvi, H. & Awudu, R. 2012. Radiation doses and hazards from processing
of crude oil at the Tema oil refinery in Ghana. Radiation Protection Dosimetry 148(3): 318-328.
Fadzil, S.M., Hrma, P., Schweiger,
M.I. & Riley, B.J. 2015. Liquids temperature and chemical durability of
selected glasses to immobilize rare earth oxides waste. Journal of Nuclear Materials 465: 657-663.
Farid, O.M., Ojovan, M.I., Massoud,
A. & Abdel Rahman, R.O. 2019. Assessment of initial leaching
characteristics of alkali-borosilicate glasses for nuclear waste immobilization
materials. Materials 12(9): 1462.
Frankel, G.S., Vienna, J.D., Lian,
J., Scully, J.R., Gin, S., Ryan, J.V., Wang, J., Kim, S.H., Windl, W. & Du,
J. 2018. A comparative review of the aqueous corrosion of glasses, crystalline
ceramics and metals. Npj Materials
Degradation 2(15): 1-17.
Garner,
J., Cairns, J. & Read, D. 2017. NORM in the East Midlands' oil and gas
producing region of the UK. Journal of
Environmental Radioactivity 150: 49-56.
Gopang, I.A., Mahar, A.S., Akhtar,
K.S., Omer, M. & Azeem, M.S. 2016. Characterization of the sludge deposits
in crude oil storage tanks. Journal of
Faculty of Engineering and Technology 23(1): 57-64.
Hasanuzzaman, M., Rafferty, A.,
Sajja, M. & Olabi, A.G. 2016. Properties of glass materials. In Reference Module in Materials Science and
Materials Engineering, edited by Sereni, J.G.R. Amsterdam: Elsevier.
Hu, G., Li, J. & Zeng, G. 2013.
Recent development in the treatment of oily sludge from petroleum industry: A
review. Journal of Hazardous Materials 261: 470-490.
Hui, K., Tang, J., Lu, H., Xi, B.,
Qu, C. & Li, J. 2020. Status and prospect of oil recovery from oily sludge:
A review. Arabian Journal of Chemistry 13(8): 6523-6543.
IAEA. 1996. Measurement of Radionuclides in Food and the Environment. Vienna:
International Atomic Energy Agency (IAEA).
Iwaszko, J., Zawada, A., Prezerada,
I. & Lubas, M. 2018. Structural and microstructural aspects of
asbestos-cement waste vitrification. Spectrochimica
Acra Part A; Molecular and Biomolecular Spectroscopy 195: 95-102.
Jain, V. 2019. Chemical Durability of Nuclear Waste Glasses-A Review. Center for
Nuclear Waste Regulatory Analyses, Southwest Research Institute. San Antonio,
Texas: United States Nuclear Regulatory Commission.
Johnson, O.A. & Affam, A.C.
2019. Petroleum sludge treatment and disposal: A review. Environment Engineering Research 24(2): 191-201.
Johnson, O.A., Madzlan, N.,
Kamaruddin, I. & Oloruntobi, O.O. 2015. Building blocks from petroleum
sludge: Leachability and toxicity studies. International
Journal of Applied Engineering Research 10(24): 45479-45481.
Karaahmet, O. & Cicek, B. 2019.
Waste recycling of cathode ray tube glass through industrial production of
transparent ceramic frits. Journal of the
Air & Waste Management Association 69(10): 1258-1266.
Kim, M., Corkhill, C.L., Hyatt, N.C.
& Heo, J. 2018. Development, characterization, and dissolution behavior of
calcium-aluminoborate glass wasteform to immobilize rare-earth oxides. Scientific Reports 8(1): 1-8.
Kim, M., Kim, H.G., Kim, S., Yoon,
J.H., Sung, J.Y., Jin, J.S., Lee, M.H., Kim, C.W., Heo, J. & Hong, K.S.
2020. Leaching behaviors and mechanisms of vitrified forms for the low-level
radioactive solid wastes. Journal of
Hazardous Materials 384: 121296.
Lonergan, C.E. &
Neeway, J.J. 2017. A Critical Review of Ion Exchange in
Nuclear Waste Glasses to Support the Immobilized Low-Activity
Waste Integrated Disposal Facility Rate Model. United States:
Pacific Nortwest National Laboratory.
Manaktala, H.K. 1992. An Assessment of Borosilicate Glass as a
High-Level Waste Form. Texas: Center for Nuclear Regulatory Analyses San
Antonia.
Meegoda, J.N., Ezeldin, A.S., Fang,
H.Y. & Inyang, H.I. 2003. Waste immobilization technologies. Practice Periodical of Hazardous, Toxic and
Radioactive Waste Management 7(1): 46-58.
Meor, Y.M.S., Hishamuddin, H. &
Choo, T.F. 2007. Characterization study of oil sludge solid sediment. Journal of Nuclear and Related Technologies 4(1-2): 25-28.
Misra, V. & Pandey, S.D. 2005.
Hazardous waste, impact on health and environment for development of better
waste management strategies in future in India. Environment International 31(3): 417-431.
Mykowska,
A. & Hupka, J. 2014. Natural radioactivity of solid and liquid phases from
shale oil and gas prospecting in Pomerania. Polish Journal of Environmental Studies 23(6): 2137-2142.
Nada, F.K. & Omer, H.A. 2016.
Measurement of natural radioactivity in al-Dora refinery by using (HPGe)
detector. Advance in Applied Science
Research 7(4): 197-208.
Nuha, T.A. 2012. Determination of
pollutant elements and heavy metals in petroleum sludge and scale at Heglig
Field, Sudan. Sudan Academy of Science. Masters Thesis. (Unpublished).
Ojovan, M.I. & Batyukhnova, O.G.
2007. Glasses for Nuclear Waste Immobilization. In 2007 Waste Management Symposium. Tucson, AZ. February 25 - March 1.
Ojovan, M.I., Petrov, V.A. &
Yudintsev, S.V. 2021. Glass crystalline materials as advanced nuclear
wasteforms. Sustainability 13(8):
4117.
Ojovan, N.V., Startceva, L.V.,
Barinov, A.S., Ojovan, M.I., Bacon, D.H., McGrail, B.P. & Vienna, J.D.
2004. Product consistency test of fully radioactive high-sodium content
borosilicate glass K-26. Materials
Research Society 824: 1-6.
Oniki, T., Nabemoto, T. & Fukui,
T. 2018. Vitrification technology for treating low-level waste from nuclear
facilities. IHI Engineering Review 51(1): 25-31.
Pei, S.L., Chen, T.L., Pan, S.Y.,
Yang, Y.L., Sun, Z.H. & Li, Y.L. 2020. Addressing environmental
sustainability of plasma vitrification technology for stabilization of
municipal solid waste incineration fly ash. Journal
of Hazardous Materials 398: 122959.
Philemon, Z.B., Martin, B.N. &
Christelle, S.J.E. 2016. Characterization of oily sludge from Cameroon
petroleum refinery. International Journal
of Emerging Engineering Research and Technology 4(3): 34-38.
Puad, M.H.A. & Noor, M.M.Y.
2003. Behaviours of 232Th, 238U, 228Ra and 226Ra
on combustion of crude oil terminal sludge. Journal
of Environmental Radioactivity 73(3): 289-305.
Rani, N., Shrivastava, J.P. &
Bajpa, R.K. 2010. Corrosion mechanism in the obsidian and its comparison with
waste glass for long-term performance assessment in the geological repository. The Open Corrosion Journal 3(1): 16-27.
Ruzali, N.S.I., Alwi, N., Idris,
M.I., Mohd Fadzil, S. & Ba’an, R. 2021. Pemegunan bahan radioaktif dalam
enap cemar minyak menggunakan kaca sebagai kaedah alternatif. Sains Malaysiana 50(8): 2419-2431.
Shakhatreh, S. 2015. Properties and
suitability of east Aqaba area feldspar for glass industries in Jordan. Journal of Materials Science Research 4(2):
22-33.
Shu, X., Li, Y., Huang, W., Chen,
S., Xu, C., Zhang, S., Li, B., Wang, X., Qing, Q. & Lu, X. 2020. Rapid
vitrification of uranium-contaminated soil: Effect and mechanism. Environmental Pollution 263: 114539.
Stefan, R., Culea, E.
& Pascuta, P. 2012. The effect of copper ions addition on structural and
optical properties of zinc borate glasses. Journal
of Non-Crystalline Solids 358(4): 839-846.
Stoyanova, L.T., Fraga, D.,
Barrachina, E., Calvet, I. & Carda, J.B. 2019. Vitrification and
sinter-crystallization of fly ash with glass cullet. Material Science & Engineering International Journal 3(5):
189-193.
USEPA. 2021. Radiation Health Effect. United States: United States Environmental
Protection Agency (USEPA).
USEPA. 2017. Leaching Environmental Assessment Framework (LEAF) How-to Guide. United
States: United States Environmental Protection Agency (USEPA).
USEPA. 1996. SW-846 Test Method 3052. United States: United
States Environmental Protection Agency (USEPA).
Vienna, J.D. & Spearing, D.R.
2003. Environmental Issue and Waste
Management Technologies in the Ceramic and Nuclear Industries IX. Hoboken:
Wiley.
Xhixha, G.,
Baldoncini, M., Callegari, I., Colonna, F., Hasani, F., Mantovani, F., Shala,
F., Strati, V. & Kaceli, M.X. 2015. A century of oil and gas exploration in
Albania: Assessment of naturally occurring radioactive materials (NORMs). Chemosphere 139: 30-39.
Zakariya, N.I. & Kahn, M. 2014.
Benefits and biological effects of ionizing radiation. Scholars Academic Journal of Biosciences 2(9): 583-591.
*Corresponding
author; email: syazwanimf@ukm.edu.my
|