Sains Malaysiana 51(4)(2022): 1261-1269
http://doi.org/10.17576/jsm-2022-5104-24
Solar Radio Burst Type II
Characteristics and Coronal Mass Ejections (CMEs) Structure Based on the
Presence of a Moreton Wave
(Pencirian Letupan Suria Radio Jenis II dan Struktur Letusan Jisim Korona (CME) Berdasarkan Kehadiran Gelombang Moreton)
Z.S. HAMIDI1,2*, N.H.ZAINOL2, N.N.M.SHARIFF2,3 & N. MOHAMAD ANSOR1,2
1School
of Physics and Material Science, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450
Shah Alam, Selangor Darul Ehsan, Malaysia
2Institute
of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
3Academy
of Islamic and Contemporary Studies, Universiti Teknologi MARA, 40450 Shah Alam,
Selangor Darul Ehsan, Malaysia
Received:
20 June 2021/Accepted: 19 August 2021
Abstract
The
Moreton wave has been extensively studied in explaining the relation between
solar flare, Coronal Mass Ejections (CMEs) and Solar Radio Solar Burst Type II
(SRBT II) phenomena. The purpose of this study was to determine whether Moreton
waves have an impact on CME structure based on SRBT II parameters. The drift
rate and structures of 28 SRBT II events selected from year 2014 to 2017 and
observed by using ground-based Compound Low-cost Low Frequency Transportable
Observatory (CALLISTO) spectrometer were determined. The CME data such as width
angle and velocity were obtained from Large Angle Spectroscopy Coronagraph
Observatory (LASCO) instrument, while solar flare class and its Active Region
(AR) were attained from the Geostationary Operational Environmental Satellite
(GOES). From the results, impulsive CME events have X, M and C class of solar
flare in the presence of Moreton wave by using GONG data archive while gradual
CME were associated with C or B class of solar flare. Impulsive CMEs have an
angle of width more than 60° and velocity more than 500 km/s associated with
both herringbone (HB) and harmonic structure of SRBT II. However, 30% of
gradual CMEs which are associated with HB structure of SRBT II did not
accompany by Moreton wave presence. Therefore, we can deduce that the impulsive
CMEs are formed under the influence of Moreton wave and gradual CMEs emerged
without the Moreton wave, based on the structure of SRBT II.
Keywords:
Active Region; coronal mass ejections; Moreton wave; solar flare; solar radio
solar burst type II
Abstrak
Gelombang Moreton telah dikaji secara meluas dalam menerangkan hubungan
antara suar suria, Letusan Jisim Korona (CMEs) dan fenomenon Letupan Suria Radio Jenis II (SRBT II). Tujuan kajian ini adalah untuk menentukan sama ada gelombang
Moreton mempunyai kesan ke atas struktur CME berdasarkan parameter SRBT II.
Kadar hanyutan dan struktur 28 kejadian SRBT II yang dipilih dari tahun 2014
hingga 2017 dan diperhatikan dengan menggunakan peranti bumi spektrometer
Majmuk Balai Cerap Boleh Angkut Kos Rendah Frekuensi Rendah (CALLISTO) telah
ditentukan. Data CME seperti sudut lebar dan halaju diperoleh daripada
instrumen Balai Cerap Graf Korona Spektroskopi Sudut Besar (LASCO), manakala kelas suar suria dan Wilayah Aktif
(AR) diperoleh daripada Satelit Geopegun Operasi Alam Sekitar (GOES). Daripada
keputusan, kejadian CME impulsif mempunyai kelas X, M dan C suar suria dengan
kehadiran gelombang Moreton dengan menggunakan data arkib GONG manakala CME
beransur-ansur dikaitkan dengan suar suria kelas C atau B. CME impulsif
mempunyai sudut lebar lebih daripada 60° dan halaju lebih daripada 500 km/s
yang dikaitkan dengan kedua-dua tulang ikan herring (HB) dan struktur harmoni SRBT
II. Walau bagaimanapun, 30% daripada CME secara beransur-ansur yang dikaitkan
dengan struktur HB SRBT II tidak disertai oleh kehadiran gelombang Moreton.
Oleh itu, boleh disimpulkan bahawa CME impulsif terbentuk di bawah pengaruh
gelombang Moreton dan CME beransur-ansur muncul tanpa gelombang Moreton,
berdasarkan struktur SRBT II.
Kata kunci: Gelombang Moreton; letusan jisim korona; letupan suria radio jenis II; nyalaan suria; wilayah aktif
REFERENCES
Benz, A.O. & Güdel,
M. 2010. Physical processes in magnetically driven flares on the sun, stars,
and young stellar objects. Annual Review
of Astronomy and Astrophysics 48: 241-287.
Borovsky, J.E. & Valdivia, J.A. 2018.
The Earth’s magnetosphere: A systems science overview and assessment. Surveys in Geophysics 39(5): 817-859.
Cairns, I.H. & Robinson, R.D.
1987. Herringbone bursts associated with type II solar radio emission. Solar Physics 111(2): 365-383.
Chernov, G.P. 2011. Fine Structure of Solar Radio Bursts. New York: Springer Science+Business Media. pp. 1-270.
Cliver, E.W., Webb, D.F. & Howard,
R.A. 1999. On the origin of solar metric type II bursts. Solar Physics 187(1): 89-114.
Domingo, V., Fleck, B. & Poland,
A.I. 1995. The SOHO mission: An overview. Solar
Physics 162(1): 1-37.
Gopalswamy, N. 2011. Coronal mass ejections
and solar radio emissions. Planetary
Radio Emissions 7: 325-342.
Howard, T. 2014. Space Weather and Coronal Mass Ejections. New York: Springer Science+Business Media. pp. 1-96.
Kai, K. 1969. Radio evidence of
directive shock-wave propagation in the solar corona. Solar Physics 10(2): 460-464.
Landi, E., Raymond, J.C., Miralles,
M.P. & Hara, H. 2010. Physical conditions in a coronal mass ejection from Hinode, Stereo, and SOHO observations. The Astrophysical Journal 711(1): 75-98.
Lugaz, N., Temmer, M., Wang, Y. &
Farrugia, C.J. 2017. The interaction of successive coronal mass ejections: A
review. Solar Physics 292(4): 64.
Moreton, G.E. 1960. Hα
observations of flare-initiated disturbances with velocities ~1000 Km/sec. Astronomical Journal 65: 494.
Robbrecht, E. & Berghmans,
D. 2004. Automated recognition of coronal mass ejections (CMEs) in
near-real-time data. Astronomy &
Astrophysics 425(3): 1097-1106.
Smith, S.F., Harvey, K.L. & Macris, C.J. 1971. Physics of the solar corona. In Proceedings of the NATO Advanced Study
Institute, Astrophysics and Space Science Library 27: 156.
Svestka, Z. 2012. Solar Flares (Vol. 8). Dordrecht, Holland: D. Reidel Publishing Company. pp. 1-349.
Uchida, Y., Altschuler,
M.D. & Newkirk, G. 1973. Flare-produced coronal MHD-fast-mode wavefronts and Moreton’s wave phenomenon. Solar Physics 28(2): 495-516.
Vršnak, B., Magdalenić,
J., Aurass, H. & Mann, G. 2002. Band-splitting of
coronal and interplanetary type II bursts-II. Coronal magnetic field and Alfvén velocity. Astronomy
& Astrophysics 396(2): 673-682.
Wang, J., Yan, X., Kong, D., Xue, Z., Yang, L. & Li, Q. 2020. A small-scale filament
eruption inducing a Moreton wave, an EUV wave, and a coronal mass ejection. The Astrophysical Journal 894(1): 30.
Warmuth, A., Vršnak,
B., Magdalenić, J., Hanslmeier,
A. & Otruba, W. 2004a. A multiwavelength study of
solar flare waves-I. Observations and basic properties. Astronomy & Astrophysics 418(3): 1101-1115.
Warmuth, A., Vršnak,
B., Magdalenić, J., Hanslmeier,
A. & Otruba, W. 2004b. A Multiwavelength study of
solar flare waves-II. Perturbation characteristics and physical interpretation. Astronomy & Astrophysics 418(3):
1117-1129.
Webb, D.F. & Howard, T.A. 2012.
Coronal mass ejections: Observations. Living
Reviews in Solar Physics 9(1): 1-83.
Zhang, Y., Kitai, R., Narukage, N., Matsumoto, T., Ueno, S., Shibata, K. &
Wang, J. 2011. Propagation of Moreton waves. Publications of the Astronomical Society of Japan 63(3): 685-696.
Zuccarello, F. 2012. Data analysis
and mathematical modeling of the initiation of coronal mass ejections.
University of Leuven. Ph.D. Thesis (Unpublished).
*Corresponding author; email: zetysh@uitm.edu.my
|