Sains Malaysiana 51(4)(2022): 1271-1282
http://doi.org/10.17576/jsm-2022-5104-25
Analyzing Interferometric CO (3-2)
Observations of NGC 4039
(Menganalisis Interferometrik CO (3-2) Pemerhatian NGC 4039)
JAZEEL H. AZEEZ1,*,
ZAMRI ZAINAL ABIDIN2, SADEEM ABBAS FADHIL1 &
CHORNG-YUAN HWANG3
1Al-Nahrain University, Faculty of
Science, Physics Department, Baghdad 10072, Iraq
2Physics Department, Faculty of
Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
3National Central University,
Graduate Institute of Astronomy, Chung-Li, 32054, Taiwan
Received:
12 August 2021/Accepted: 25 October 2021
Abstract
Starburst
merging galaxies are important in the history of galaxy evolution timeline. For
this work, we have chosen the Antennae galaxy (NGC4039), which is one of the
most famous starburst merging galaxies. We analyzed the CO (3–2)
interferometric observations for the southern mosaic of the NGC 4039, together
with the CO (2–1) data taken from Atacama Large Millimeter/Sub-millimeter Array
(ALMA). Using the galactic CO luminosity to H2 mass conversion
factor, we found molecular gas mass range in this galaxy to be (0.8–2.92) × 108 Mʘ. Line emissions at CO (2–1) and CO
(3–2) were detected at selected regions in the nucleus of NGC 4039. The CO
(3–2) / CO (2–1) ratio for this
galaxy was calculated to be approximately 0.62. In addition, we found a
significant correlation between the brightness temperature ratio and IR
luminosity for this galaxy. We used a new model to interpret the rotation curve
and found that the most important factor is related to gas mass distribution.
The disturbance in the gas distribution may be caused by the merging process.
We have also analyzed the spatially resolved star formation law in this galaxy
up to 345 parsec. We found a breakdown of the Kennicutt–Schmidt law at this scale. The results are
consistent with the previous findings that there is a possibility of
sub-thermally excited widespread gas in the neighborhood of denser regions,
which causes the flatter star formation law.
Keywords:
Galaxy evolution; NGC 4039; rotation curve; starburst; star formation
Abstrak
Galaksi percantuman ledakan bintang adalah penting dalam sejarah garis masa evolusi galaksi. Dalam kajian ini,
kami memilih galaksi Antennae (NGC4039) yang merupakan salah satu galaksi percantuman ledakan bintang yang terkenal. Kami menganalisis hasil cerapan interferometer CO
(3-2) bagi mozek selatan NGC4039, bersama-sama dengan data CO (2-1) yang diambil daripada Atacama Large Millimeter/Sub-millimeter
Array (ALMA). Dengan menggunakan faktor penggubah kecerahan CO untuk galaksi kepada jisim H2, kami mendapati bahawa julat jisim gas molekul adalah (0.8–2.92) × 108 Mʘ. Nisbah CO (3–2)/CO (2–1) untuk galaksi ini telah dihitung sebagai lebih kurang 0.62. Tambahan pula, kami mendapati hubungan ketara antara nisbah suhu kecerahan dan IR kelumenan bagi galaksi ini. Kami menggunakan suatu model baharu bagi menginterpretasi lengkung putaran dan mendapati bahawa faktor terpenting bagi model ini berkait dengan pembahagian jisim gas. Sebarang gangguan dalam pembahagian gas mungkin disebabkan oleh proses percantuman. Kami juga telah menganalisis hukum kejadian bintang reruang terlerai dalam galaksi ini sehingga 345 parsec. Kami mendapati hukum Kennicutt–Schmidt gagal pada skala ini. Keputusan kajian ini adalah tekal dengan keputusan sebelum ini yang berkemungkinan terdapat gas tersebar teruja secara sub-terma dalam kawasan kejiranan yang lebih padat dan ini akan menjadikan hukum kejadian bintang yang lebih rata.
Kata kunci: Evolusi galaksi; ledakan bintang; lengkuk putaran; NGC 4039; pembentukan bintang
REFERENCES
Azeez, J.H., Zghair,
A.A., Fadhil, S.A. & Abidin, Z.Z. 2021.
Rotational velocity and dynamical mass for the nuclear disk of the ULIRG Arp
220. Journal of Physics: Conference
Series 1829: 012004.
Azeez, J.H., Fadhil, S.A., Naser-Alla, Z.K. & Abidin, Z.Z.
2018. ALMA study of the lensed galaxy SDP.81. Al-Nahrain Journal of Science 1: 69-71.
Azeez, J.H., Abidin,
Z.Z., Hwang, C.Y. & Ibrahim, Z.A.
2017. Star formation law at sub-kpc scale in the elliptical galaxy Centaurus A
as seen by ALMA. Advances in Astronomy 2017: 8416945.
Azeez, J.H., Hwang, C.Y., Abidin, Z.Z. & Ibrahim, Z.A. 2016. Kennicutt-Schmidt
Law in the central region of NGC 4321 as seen by ALMA. Scientific Reports 6: 26896.
Azeez, J.H., Abidin,
Z.Z., Ibrahim, Z.A. & Hwang, C.Y. 2015. Rotation curve and dynamical mass
in the inner region of M100 with ALMA. 2015 International Conference on Space Science
and Communication (IconSpace). IEEE. pp. 329-334.
Barnes, J.E. & Hernquist, L. 1992. Formation of dwarf galaxies in tidal
tails. Nature 360: 715-717.
Bigiel, F., Leroy, A.K., Blitz, L., Bolatto, A.D., Cunha, E.D., Rosolowsky,
E., Sandstrom, K. & Usero, A. 2015. Dense gas
fraction and star formation efficiency variations in the Antennae Galaxies. Astrophysical Journal 815: 103.
Bolatto, A.D., Wolfire,
M. & Leroy, A.K. 2013. The CO-to-H2 conversion factor. Annual Review of Astronomy and Astrophysics 51: 207-268.
Devereux, N., Taniguchi, Y.,
Sanders, D.B., Nakai, N. & Young, J.S. 1994. 12CO
(3-2) & (1-0) Emission line observations of nearby starburst galaxy nuclei. The Astronomical Journal 107(6):
2006-2016.
Espada, D., Komugi,
S., Muller, E., Nakanishi, K., Saito, M., Tatematsu,
K., Iguchi, S., Hasehawa, T., Mizuno, N., Iono, D., Matsushita, S., Trejo, A., Chapillon,
E., Takahashi, S., Su, Y.N., Kawamura, A., Akiyama, E., Iraatsi,
M., Nagai, H., Miura, R.E., Jurono, Y., Sawada, T.,
Higuchi, A.E., Tachihara, K., Saigo,
K. & Kamazaki, T. 2012. Giant molecular clouds
and star formation in the tidal molecular arm of NGC4039. Astrophysical Journal Letters 760(2): 1-5.
Fadhil, S.A., Azeez, J.H. & Hassan,
M.A. 2021. Derivation of a new multiscale model: I. Derivation of the model for
the atomic, molecular and nano material scales. Indian Journal of Physics 95(2):
209-217.
Fadhil, S.A., Hassan, M.A., Azeez,
J.H. & Majeed, M.S. 2020. Derivation of a new multiscale model: II.
deriving a modified hall-petch relation from the
multiscale model and testing it for nano, micro, and
macro materials. In 3rd International
Conference on Sustainable Engineering Techniques (ICSET 2020). IOP
Publishing 881: 01298.
Fadhil, S.A., Azeez, J.H. & Whahaeb, A.F. 2014. Solving the instantaneous response
paradox of entangled particles using the time of events theory. The European Physical Journal Plus 129(23): 1-10.
Karachentsev, I.D. & Makarov, D.A. 1996. The
galaxy motion relative to nearby galaxies and the local velocity field. The Astronomical
Journal 111: 794-803.
Katz, H., Lelli,
F., McGaugh, S.S., Di Cintio,
A., Brook, C.B. & Schombert, J.M. 2017. Testing
feedback-modified dark matter haloes with galaxy rotation curves: Estimation of
halo parameters and consistency with ΛCDM scaling relations. Monthly Notices of the Royal Astronomical
Society 466(2): 1648-1668.
Kennicutt, J.R.C. 1998. The global Schmidt
law in star‐forming galaxies. The
Astrophysical Journal 498(2): 541-552.
Kennicutt, J.R.C., Schweizer, F., Barnes,
J.E., Friedli, D., Martinet, L. & Pfenniger, D. 1998. Galaxies:
Interactions and Induced Star Formation. Berlin: Springer. pp. 1-406.
Krumholz, M.R. & Thompson, T.A. 2007.
The relationship between molecular gas tracers and Kennicutt-Schmidt
Laws. The
Astrophysical Journal 669(1): 289-298.
Larson, R.B. 1990. Formation of Star
Clusters. In Physical Processes in
Fragmentation and Star Formation, edited by Capuzzo-Dolcetta,
R., Chiosi, C. & Fazio, A.D. Dordrecht: Springer
Netherlands. pp. 389-400.
Matthews, A.M., Johnson, K.E.,
Whitmore, B.C., Brogan, C.L., Leroy, A.K. & Indebetouw,
R. 2018. Resolved star formation efficiency in the Antennae galaxies. The Astrophysical Journal 862(2): 147.
Mauersberger,
R., Henkel, C., Walsh, W. & Schulz, A. 1999. Dense gas in nearby galaxies
XII. A survey for CO J = 3 − 2 emission.
Astronomy
& Astrophysics 341: 256-263.
Mihos, J.C., Bothun, G.D. & Richstone, D.O. 1993. Modeling the spatial distribution of
star formation in interacting disk galaxies. The Astrophysical Journal 418(1): 82-99.
Muders, D., Schulz, A., Mauersberger, R., Mao, R.Q., Henkel, C. & Röllig, M. 2007. The interstellar medium of the Antennae
galaxies. Astronomy & Astrophysics 466(2): 467-479.
Narayanan, D., Cox, T.J., Shirley,
Y., Davé, R., Hernquist, L.
& Walker, C.K. 2008. Molecular star formation rate indicators in galaxies. The Astrophysical Journal 684(2):
996-1008.
Neff, S.G. & Ulvestad,
J.S. 2000. VLA observations of the nearby merger NGC 4038/4039: H II regions
and supernova remnants in the ‘Antennae’. The
Astronomical Journal 120(2): 670-696.
Rivera, G.C., Hodge, J.A., Smail, I., Swinbank, A.M., Weiß, A., Wardlow, J.L., Walter, F., Rybak, M., Chen, C.
& Brandt, W.N. 2018. Resolving the ISM at the peak of cosmic star formation
with ALMA - The distribution of CO and dust continuum in Z~2.5 sub-millimetre galaxies. The
Astrophysical Journal 863(1): 56.
Saviane, I., Hibbard, J.E. & Rich, R.M.
2004. The stellar content of the Southern Tail of NGC 4038/4039 and a revised
distance. The Astronomical Journal 127(2): 660-678.
Schirm, M.R., Wilson, C.D., Madden, S.C.
& Clements, D.L. 2016. The dense gas in the largest molecular complexes of
the antennae: HCN and HCO+ observations of NGC 4038/39 using ALMA. The Astrophysical Journal 823(2): 87.
Solomon, P.M. & Vanden, B.P.A.
2005. Molecular gas at high redshift. Annual
Review of Astronomy and Astrophysics 43: 677-725.
Teyssier, R., Chapon,
D. & Bournaud, F. 2010. The driving mechanism of
starbursts in galaxy mergers. The
Astrophysical Journal Letters 720(2): L149.
Tsai, M., Hwang, C.Y., Matsushita,
S., Baker, A.J. & Espada, D. 2012. Interferometric CO(32)
observations toward the central region of NGC1068. Astrophysical Journal 746: 129.
Ueda, J., Iono,
D., Petitpas, G., Yun, M.S., Ho, P.T.P., Kawabe, R., Mao, R.Q., Martin, S., Matsushita, S., Peck,
A.B., Tamura, Y., Wang, J., Wang, Z., Wilson, C.D. & Zhang, Q. 2012.
Unveiling the physical properties and kinematics of molecular gas in the
Antennae galaxies (NGC4038/9) through high-resolution CO (J = 3-2)
observations. The Astrophysical Journal 745: 65.
Ueda, J., Watanabe, Y., Iono, D., Wilner, D.J., Fazio,
G.G., Ohashi, S., Kawabe, R., Saito, T. & Komugi, S. 2017. ALMA observations of the dense and shocked
gas in the nuclear region of NGC 4038 (Antennae galaxies). Publications of the Astronomical Society of Japan 69(1): 1-9.
Wei, L.H., Keto, E. & Ho, L.C.
2012. Two populations of molecular clouds in the Antennae galaxies. The Astrophysical Journal 750: 136.
Whitmore, B.C., Brogan, C., Chandar, R., Evans, A., Hibbard, J., Johnson, K., Leroy,
A., Privon, G., Remijan, A.
& Sheth, K. 2014. ALMA observations of the
Antennae galaxies. I. A new window on a prototypical merger. The Astrophysical Journal 795: 156.
Whitmore, B.C., Zhang, Q., Leitherer, C., Fall, S.M., Schweizer, F. & Miller, B.W.
1999. The luminosity function of young star clusters in ‘the Antennae’ galaxies
(NGC 4038/4039). The Astronomical Journal 118(4): 1551-1576.
Wilson, C.D., Scoville, N., Madden,
S.C. & Charmandaris, V. 2003. The mass function
of supergiant molecular complexes and implications for forming young massive
star clusters in the Antennae (NGC 4038/4039). The Astrophysical Journal 599(2): 1049-1066.
Wu, H., Cao, C., Hao, C.N., Liu,
F.S., Wang, J.L., Xia, X.Y., Deng, Z.G. & Young, C.K.S. 2005. PAH and
mid-infrared luminosities as measures of star formation rate InSpitzerFirst look survey galaxies. The Astrophysical Journal 632(2): L79-82.
Zhu, M., Seaquist,
E.R. & Kuno, N. 2003. A multitransition CO study of the Antennae galaxies NGC 4038/9. The Astrophysical Journal 588(1): 243-263.
*Corresponding author; email: jazeelhussein@yahoo.com
|