Sains Malaysiana 51(5)(2022): 1373-1383

http://doi.org/10.17576/jsm-2022-5105-09

 

Analysis of Serum Pharmacochemistry of Hederagenin using UPLC-Q-TOF/MS

(Analisis Farmakokimia Serum Hederagenin menggunakan UPLC-Q-TOF/MS)

 

MENG YANG* & JING WANG

 

School of Pharmaceutical Engineering, Jiang Su Food & Pharmaceutical Science College

China, 4, Meicheng Road, Huaian 223003, PR China

 

Received: 25 January 2021/Accepted: 5 October 2021

 

Abstract

This study investigated the changes of plasma absorbed components in rats after oral administration of hederagenin. Serum pharmacochemistry analysis of hederagenin was carried out to understand the changes of its metabolic components in the body. Biological samples were collected and then the migration components of hederagenin-containing serum were established by UPLC/Q-TOF-MS technique. Possible metabolites were obtained for comprehensive analysis through relevant studies and the regulation of broken bonds in the molecular structure of hederagenin. At about 10.262 min, the molecular ion peak of the hederagenin of M/Z 471[M-H]- was detected in negative ion mode and the prototype product and its associated fragment ions could be detected only at 1, 3, 6, 9, 12, and 24 h after administration. Seventy-one signal peaks of potential metabolites were found in the drug serum. Based on the bond energy characteristics of molecular structure, 47 possible metabolite-related molecular ion peaks through decarboxylation, dehydration, demethylation or methyl shift, deoxygenation, ring opening, and unsaturated biformation were deduced, and signals of 35 metabolite-related molecular ion peaks were identified. Hederagenin can metabolize many products in vivo. Important information about the metabolism of hederagenin, which is useful for fully understanding its mechanism of action, was provided in this study.

 

Keywords: Hederagenin; serum pharmacochemistry; UPLC/Q-TOF-MS

 

Abstrak

Penyelidikan ini mengkaji perubahan komponen yang diserap plasma dalam tikus selepas pemberian oral hederagenin. Analisis farmakokimia serum hederagenin telah dijalankan untuk memahami perubahan komponen metabolik dalam badan. Sampel biologi telah dikumpulkan dan kemudian komponen penghijrahan serum yang mengandungi hederagenin telah dibentuk dengan teknik UPLC/Q-TOF-MS. Metabolit yang mungkin diperoleh menjalani analisis komprehensif melalui kajian yang berkaitan dan pengawalan ikatan pecah dalam struktur molekul hederagenin. Pada 10.262 min, puncak ion molekul hederagenin M/Z 471[MH]- telah dikesan dalam mod ion negatif dan produk prototaip serta ion serpihan yang berkaitan boleh dikesan hanya pada 1, 3, 6, 9, 12 dan 24 jam. Tujuh puluh satupuncak isyarat metabolit yang berpotensi ditemui dalam serum ubat. Berdasarkan ciri tenaga ikatan struktur molekul, 47 daripadanya berkemungkinan ion molekul yang berkaitan dengan metabolit memuncak melalui dekarboksilasi, dehidrasi, demetilasi atau anjakan metil, penyahoksigenan, pembukaan cincin serta biformasi tak tepu dan signal 35 ion molekul berkaitan metabolit puncak dikenal pasti. Hederagenin boleh memetabolismekan banyak produk in vivo. Maklumat penting tentang metabolisme hederagenin yang berguna untuk memahami sepenuhnya mekanisme tindakannya telah dikaji dalam kajian ini.

 

Kata kunci: Farmakokimia serum; hederagenin; UPLC/Q-TOF-MS

 

REFERENCES

Choi, J., Jung, H.J., Lee, K.T. & Park, H.J. 2005. Antinociceptive and anti-inflammatory effects of the saponin and sapogenins obtained from the stem of Akebia quinata. J. Med. Food 8(1): 78-85. doi:10.1089/jmf.2005.8.78

Huang, M., Cheng, Z., Wang, L., Feng, Y., Huang, J., Du, Z. & Jiang, H. 2018. A targeted strategy to identify untargeted metabolites from in vitro to in vivo: Rapid and sensitive metabolites profiling of licorice in rats using ultra-high performance liquid chromatography coupled with triple quadrupole-linear ion trap mass spectrometry. J. Chromatogr. B, Analyt. Technol. Biomed. Life Sci. 1092: 40-50. doi:10.1016/j.jchromb.2018.05.044

Jun, X.H. & Tong, Z.L. 2012. Studies on the pharmacokinetics and quality control methods of triterpenoid saponins in Pulsatilla chinensis. Heibei Medical University. Ph.D. Thesis (Unpublished).

Iwama, H., Amagaya, S. & Ogihara, Y. 1987. Effect of shosaikoto, a Japanese and Chinese traditional herbal medicinal mixture, on the mitogenic activity of lipopolysaccharide: A new pharmacological testing method. J. Ethnopharmacol. 21(1): 45-53. doi:10.1016/0378-8741(87)90093-6

Jin, M.M., Zhang, W.D., Jiang, H.H., Du, Y.F., Guo, W., Cao, L. & Xu, H.J. 2018. UPLC-Q-TOF-MS/MS-guided dereplication of Pulsatilla chinensis to identify triterpenoid saponins. Phytochem. Anal. 29(5): 516-527. doi:10.1002/pca.2762

Ju, Z., Li, J., Han, H., Yang, L. & Wang, Z. 2018. Analysis of bioactive components and multi-component pharmacokinetics of saponins from the leaves of Panax notoginseng in rat plasma after oral administration by LC-MS/MS. J. Sep. Sci. 41(7): 1512-1523. doi:10.1002/jssc.201701042

Kim, D.H., Yu, K.W., Bae, E.A., Park, H.J. & Choi, J.W. 1998. Metabolism of kalopanaxsaponin B and H by human intestinal bacteria and antidiabetic activity of their metabolites. Biol. Pharm. Bull. 21(4): 360-365. doi:10.1248/bpb.21.360

Kim, E.H., Baek, S., Shin, D., Lee, J. & Roh, J.L. 2017. Hederagenin induces apoptosis in cisplatin-resistant head and neck cancer cells by inhibiting the Nrf2-ARE antioxidant pathway. Oxid. Med. Cell Longev. 2017: 5498908. doi:10.1155/2017/5498908

Lee, K.T., Sohn, I.C., Park, H.J., Kim, D.W., Jung, G.O. & Park, K.Y. 2000. Essential moiety for antimutagenic and cytotoxic activity of hederagenin monodesmosides and bisdesmosides isolated from the stem bark of Kalopanax pictus. Planta Med. 66(04): 329-332. doi:10.1055/s-2000-8539

Li, S.L., Lai, S.F., Song, J.Z., Qiao, C.F., Liu, X., Zhou, Y., Cai, H., Cai, B.C. & Xu, H.X. 2010. Decocting-induced chemical transformations and global quality of Du-Shen-Tang, the decoction of ginseng evaluated by UPLC-Q-TOF-MS/MS based chemical profiling approach. J. Pharm. Biomed. Anal. 53(4): 946-957. doi:10.1016/j.jpba.2010.07.001

Li, Y.J., Wei, H.L., Qi, L.W., Chen, J., Ren, M.T. & Li, P. 2010. Characterization and identification of saponins in Achyranthes bidentata by rapid-resolution liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Rapid Commun. Mass Spectrom. 24(20): 2975-2985. doi:10.1002/rcm.4728

Lu, S.H., Guan, J.H., Huang, Y.L., Pan, Y.W., Yang, W., Lan, H., Huang, S., Hu, J. & Zhao, G.P. 2015. Experimental study of antiatherosclerosis effects with hederagenin in rats. Evid. Based Complement. Alternat. Med. 2015: 456354. doi:10.1155/2015/456354

Wang, M., Chen, D.Q., Chen, L., Liu, D., Zhao, H., Zhang, Z.H., Vaziri, N.D., Guo, Y., Zhao, Y.Y. & Cao, G. 2018. Novel RAS inhibitors poricoic acid ZG and poricoic acid ZH attenuate renal fibrosis via a Wnt/beta-catenin pathway and targeted phosphorylation of smad3 signaling. J. Agric. Food Chem. 66(8): 1828-1842. doi:10.1021/acs.jafc.8b00099

Wang, X., Sun, W., Sun, H., Lv, H., Wu, Z., Wang, P., Liu, L. & Cao, H. 2008. Analysis of the constituents in the rat plasma after oral administration of Yin Chen Hao Tang by UPLC/Q-TOF-MS/MS. J. Pharm. Biomed. Anal. 46(3): 477-490. doi:10.1016/j.jpba.2007.11.014

Wu, A.G., Zeng, W., Wong, V.K.W, Zhu, Y.Z., Lo, A.C.Y., Liu, L. & Law, B.Y.K. 2017. Hederagenin and alpha-hederin promote degradation of proteins in neurodegenerative diseases and improve motor deficits in MPTP-mice. Pharmacol. Res. 115: 25-44. doi:10.1016/j.phrs.2016.11.002

Xiong, Q., Rocco, F., Wilson, W.K., Xu, R., Ceruti, M. & Matsuda, S.P.T. 2005. Structure and reactivity of the dammarenyl cation: Configurational transmission in triterpene synthesis. J. Org. Chem. 70(14): 5362-5375. doi:10.1021/jo050147e

Xiong, Y.K., Lin, X., Liang, S., Hong, Y.L., Shen, L. & Feng, Y. 2013. Identification of senkyunolide I metabolites in rats using ultra performance liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry. J. Pharm. Biomed. Anal. 81-82: 178-186. doi:10.1016/j.jpba.2013.04.012

Yan, Y., Chai, C.Z., Wang, D.W., Yue, X.Y., Zhu, D.N. & Yu, B.Y. 2013. HPLC-DAD-Q-TOF-MS/MS analysis and HPLC quantitation of chemical constituents in traditional Chinese medicinal formula Ge-Gen Decoction. J. Pharm. Biomed. Anal. 80: 192-202. doi:10.1016/j.jpba.2013.03.008

Yun yun, X. & Chao, Y. 2011. HPLC-UV and UPLC-Q-TOF analysis and metabolism study on celastrol in rats. Shanghai Jiao Tong University. MSc. Thesis (Unpublished).

Zhang, T., Wang, Y.K., Zhao, Q., Xiao, X.R. & Li, F. 2019. UPLC-Q-TOF-MS-based metabolomics study of celastrol. Zhongguo Zhong Yao Za Zhi 44(16): 3562-3568. doi:10.19540/j.cnki.cjcmm.20190606.502

Zhou, D., Jin, H., Lin, H.B., Yang, X.M., Cheng, Y.F., Deng, F.J. & Xu, J.P. 2010. Antidepressant effect of the extracts from Fructus akebiae. Pharmacol. Biochem. Behav. 94(3): 488-495. doi:10.1016/j.pbb.2009.11.003

 

*Corresponding author; email: yangmeng202006@163.com

 

 

previous