Sains Malaysiana 51(5)(2022): 1373-1383
http://doi.org/10.17576/jsm-2022-5105-09
Analysis of Serum Pharmacochemistry of Hederagenin using UPLC-Q-TOF/MS
(Analisis Farmakokimia Serum Hederagenin menggunakan UPLC-Q-TOF/MS)
MENG YANG*
& JING WANG
School of Pharmaceutical Engineering, Jiang Su Food &
Pharmaceutical Science College
China, 4, Meicheng Road, Huaian 223003, PR China
Received: 25 January 2021/Accepted: 5 October 2021
Abstract
This study investigated the changes of plasma absorbed
components in rats after oral administration of hederagenin. Serum pharmacochemistry analysis of hederagenin was carried out
to understand the changes of its metabolic components in the body. Biological
samples were collected and then the migration components of hederagenin-containing
serum were established by UPLC/Q-TOF-MS technique. Possible metabolites were
obtained for comprehensive analysis through relevant studies and the regulation
of broken bonds in the molecular structure of hederagenin. At about 10.262 min,
the molecular ion peak of the hederagenin of M/Z 471[M-H]- was
detected in negative ion mode and the prototype product and its associated
fragment ions could be detected only at 1, 3, 6, 9, 12, and 24 h after
administration. Seventy-one signal
peaks of potential metabolites were found in the drug serum. Based on the bond
energy characteristics of molecular structure, 47 possible metabolite-related
molecular ion peaks through decarboxylation, dehydration, demethylation or
methyl shift, deoxygenation, ring opening, and unsaturated biformation were
deduced, and signals of 35 metabolite-related molecular ion peaks were
identified. Hederagenin can metabolize many products in vivo. Important
information about the metabolism of hederagenin, which is useful for fully understanding
its mechanism of action, was provided in this study.
Keywords: Hederagenin; serum pharmacochemistry; UPLC/Q-TOF-MS
Abstrak
Penyelidikan ini mengkaji perubahan komponen yang diserap plasma dalam tikus selepas pemberian oral hederagenin. Analisis farmakokimia serum hederagenin telah dijalankan untuk memahami perubahan komponen metabolik dalam badan. Sampel biologi telah dikumpulkan dan kemudian komponen penghijrahan serum yang mengandungi hederagenin telah dibentuk dengan teknik UPLC/Q-TOF-MS. Metabolit yang mungkin diperoleh menjalani analisis komprehensif melalui kajian yang berkaitan dan pengawalan ikatan pecah dalam struktur molekul hederagenin. Pada 10.262 min, puncak ion molekul hederagenin M/Z 471[MH]- telah dikesan dalam mod ion negatif dan produk prototaip serta ion serpihan yang berkaitan boleh dikesan hanya pada 1, 3, 6, 9, 12 dan 24 jam. Tujuh puluh satupuncak isyarat metabolit yang berpotensi ditemui dalam serum ubat. Berdasarkan ciri tenaga ikatan struktur molekul, 47 daripadanya berkemungkinan ion molekul yang berkaitan dengan metabolit memuncak melalui dekarboksilasi, dehidrasi, demetilasi atau anjakan metil, penyahoksigenan, pembukaan cincin serta biformasi tak tepu dan signal 35 ion molekul berkaitan metabolit puncak dikenal pasti. Hederagenin boleh memetabolismekan banyak produk in vivo. Maklumat penting tentang metabolisme hederagenin yang berguna untuk memahami sepenuhnya mekanisme tindakannya telah dikaji dalam kajian ini.
Kata kunci: Farmakokimia serum; hederagenin; UPLC/Q-TOF-MS
REFERENCES
Choi, J., Jung, H.J., Lee, K.T.
& Park, H.J. 2005. Antinociceptive and anti-inflammatory effects of the
saponin and sapogenins obtained from the stem of Akebia quinata. J. Med. Food 8(1): 78-85.
doi:10.1089/jmf.2005.8.78
Huang, M., Cheng, Z., Wang, L.,
Feng, Y., Huang, J., Du, Z. & Jiang, H. 2018. A targeted strategy to
identify untargeted metabolites from in vitro to in vivo: Rapid
and sensitive metabolites profiling of licorice in rats using ultra-high
performance liquid chromatography coupled with triple quadrupole-linear ion
trap mass spectrometry. J. Chromatogr. B, Analyt. Technol. Biomed. Life Sci. 1092: 40-50.
doi:10.1016/j.jchromb.2018.05.044
Jun, X.H. & Tong, Z.L. 2012. Studies on the pharmacokinetics and quality
control methods of triterpenoid saponins in Pulsatilla chinensis. Heibei Medical
University. Ph.D. Thesis (Unpublished).
Iwama, H., Amagaya, S. &
Ogihara, Y. 1987. Effect of shosaikoto, a Japanese and Chinese traditional herbal
medicinal mixture, on the mitogenic activity of lipopolysaccharide: A new pharmacological
testing method. J. Ethnopharmacol. 21(1): 45-53.
doi:10.1016/0378-8741(87)90093-6
Jin, M.M., Zhang, W.D., Jiang,
H.H., Du, Y.F., Guo, W., Cao, L. & Xu, H.J. 2018. UPLC-Q-TOF-MS/MS-guided
dereplication of Pulsatilla chinensis to identify triterpenoid saponins. Phytochem. Anal. 29(5): 516-527.
doi:10.1002/pca.2762
Ju, Z., Li, J., Han, H., Yang, L.
& Wang, Z. 2018. Analysis of bioactive components and multi-component
pharmacokinetics of saponins from the leaves of Panax notoginseng in rat plasma
after oral administration by LC-MS/MS. J. Sep. Sci. 41(7): 1512-1523.
doi:10.1002/jssc.201701042
Kim, D.H., Yu, K.W., Bae, E.A.,
Park, H.J. & Choi, J.W. 1998. Metabolism of kalopanaxsaponin B and H by
human intestinal bacteria and antidiabetic activity of their metabolites. Biol. Pharm. Bull. 21(4): 360-365.
doi:10.1248/bpb.21.360
Kim, E.H., Baek, S., Shin, D., Lee,
J. & Roh, J.L. 2017. Hederagenin induces apoptosis in cisplatin-resistant
head and neck cancer cells by inhibiting the Nrf2-ARE antioxidant pathway. Oxid. Med. Cell Longev. 2017: 5498908.
doi:10.1155/2017/5498908
Lee, K.T., Sohn, I.C., Park, H.J.,
Kim, D.W., Jung, G.O. & Park, K.Y. 2000. Essential moiety for antimutagenic
and cytotoxic activity of hederagenin monodesmosides and bisdesmosides isolated
from the stem bark of Kalopanax pictus. Planta Med. 66(04): 329-332.
doi:10.1055/s-2000-8539
Li, S.L., Lai, S.F., Song, J.Z.,
Qiao, C.F., Liu, X., Zhou, Y., Cai, H., Cai, B.C. & Xu, H.X. 2010.
Decocting-induced chemical transformations and global quality of Du-Shen-Tang,
the decoction of ginseng evaluated by UPLC-Q-TOF-MS/MS based chemical profiling
approach. J. Pharm. Biomed. Anal. 53(4): 946-957.
doi:10.1016/j.jpba.2010.07.001
Li, Y.J., Wei, H.L., Qi, L.W.,
Chen, J., Ren, M.T. & Li, P. 2010. Characterization and identification of
saponins in Achyranthes bidentata by rapid-resolution liquid
chromatography with electrospray ionization quadrupole time-of-flight tandem
mass spectrometry. Rapid Commun. Mass Spectrom. 24(20): 2975-2985.
doi:10.1002/rcm.4728
Lu, S.H., Guan, J.H., Huang, Y.L.,
Pan, Y.W., Yang, W., Lan, H., Huang, S., Hu, J. & Zhao, G.P. 2015.
Experimental study of antiatherosclerosis effects with hederagenin in rats. Evid. Based Complement. Alternat. Med. 2015: 456354.
doi:10.1155/2015/456354
Wang, M., Chen, D.Q., Chen, L.,
Liu, D., Zhao, H., Zhang, Z.H., Vaziri, N.D., Guo, Y., Zhao, Y.Y. & Cao, G. 2018. Novel RAS
inhibitors poricoic acid ZG and poricoic acid ZH attenuate renal fibrosis via a
Wnt/beta-catenin pathway and targeted phosphorylation of smad3 signaling. J. Agric. Food Chem. 66(8): 1828-1842.
doi:10.1021/acs.jafc.8b00099
Wang, X., Sun, W., Sun, H., Lv, H.,
Wu, Z., Wang, P., Liu, L.
& Cao, H. 2008. Analysis of the
constituents in the rat plasma after oral administration of Yin Chen Hao Tang
by UPLC/Q-TOF-MS/MS. J. Pharm. Biomed. Anal. 46(3): 477-490.
doi:10.1016/j.jpba.2007.11.014
Wu, A.G., Zeng, W., Wong, V.K.W, Zhu, Y.Z., Lo, A.C.Y., Liu, L. & Law,
B.Y.K. 2017. Hederagenin and alpha-hederin promote degradation of proteins in
neurodegenerative diseases and improve motor deficits in MPTP-mice. Pharmacol. Res. 115: 25-44.
doi:10.1016/j.phrs.2016.11.002
Xiong, Q., Rocco, F., Wilson, W.K.,
Xu, R., Ceruti, M. & Matsuda, S.P.T. 2005. Structure and reactivity of
the dammarenyl cation: Configurational
transmission in triterpene synthesis. J. Org. Chem. 70(14): 5362-5375.
doi:10.1021/jo050147e
Xiong, Y.K., Lin, X., Liang, S.,
Hong, Y.L., Shen, L. & Feng, Y. 2013. Identification of senkyunolide I
metabolites in rats using ultra performance liquid
chromatography/quadrupole-time-of-flight tandem mass spectrometry. J. Pharm. Biomed. Anal. 81-82: 178-186.
doi:10.1016/j.jpba.2013.04.012
Yan, Y., Chai, C.Z., Wang, D.W.,
Yue, X.Y., Zhu, D.N. & Yu, B.Y. 2013. HPLC-DAD-Q-TOF-MS/MS analysis and
HPLC quantitation of chemical constituents in traditional Chinese medicinal
formula Ge-Gen Decoction. J. Pharm. Biomed. Anal. 80: 192-202.
doi:10.1016/j.jpba.2013.03.008
Yun yun, X. & Chao, Y. 2011. HPLC-UV and UPLC-Q-TOF analysis and
metabolism study on celastrol in rats. Shanghai Jiao Tong University. MSc. Thesis (Unpublished).
Zhang, T., Wang, Y.K., Zhao, Q.,
Xiao, X.R. & Li, F. 2019. UPLC-Q-TOF-MS-based metabolomics study of
celastrol. Zhongguo Zhong Yao Za Zhi 44(16): 3562-3568.
doi:10.19540/j.cnki.cjcmm.20190606.502
Zhou, D., Jin, H., Lin, H.B., Yang,
X.M., Cheng, Y.F., Deng, F.J. & Xu, J.P. 2010. Antidepressant effect of the
extracts from Fructus akebiae. Pharmacol. Biochem. Behav. 94(3): 488-495.
doi:10.1016/j.pbb.2009.11.003
*Corresponding
author; email: yangmeng202006@163.com
|