Sains
Malaysiana 51(5)(2022): 1545-1556
http://doi.org/10.17576/jsm-2022-5105-22
Prestasi Bahan Polimer Komposit Dicetak menggunakan Pemodelan Pemendapan
Bersatu: Suatu Ulasan Ringkas
(Performance of Printed Composite Polymer Materials using
Unified Deposition Modeling: A Brief Review)
NISA
NAIMA KHALID, NABILAH AFIQAH MOHD RADZUAN*, ABU BAKAR SULONG &
FARHANA MOHD FOUDZI
Precision
Research Group, Department of Mechanical & Manufacturing Engineering,
Faculty Engineering & Built Environment, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 2 July 2021/ Accepted:
7 October 2021
ABSTRAK
Penambahan
kandungan pengisi polimer komposit dapat meningkatkan kekonduksian elektrik dan
terma yang baik, serta mempunyai kekuatan tegangan dan modulus yang tinggi
telah memperluaskan aplikasi dalam industri peranti elektronik. Walau
bagaimanapun, penambahan kandungan pengisi yang kurang daripada 20 bt.% akan
mengakibatkan ketidaksempurnaan dalam penyebaran serta terdapat gumpalan
pengisi ke dalam komposit. Ulasan kajian ini adalah untuk mengenal pasti
pengaruh penambahan kandungan pengisi bagi bahan konduktif polimer komposit
menggunakan percetakan 3D terhadap sifat elektrik, terma dan mekanikal. Ulasan
ini merangkumi penggunaan bahan konduktif polimer komposit yang dibentuk
melalui kaedah Pemodelan Pemendapan Bersatu (FDM) yang merupakan salah satu
daripada percetakan 3D. Proses percetakan 3D yang dilapisi oleh lapisan demi
lapisan akan menghasilkan struktur objek yang kompleks serta proses pembuatan
yang cepat telah memberi sumbangan kepada penghasilan konduktif polimer
komposit. Kekonduksian elektrik dapat ditingkatkan dengan penambahan kandungan
pengisi sehingga 50 bt.%. Selain itu, penambahan kandungan pengisi yang dapat
menawarkan permukaan yang lebih berkesan antara permukaan pengisi dan matriks
telah meningkatkan suhu penghabluran (Tc) dan suhu puncak
penghabluran (Tp) dalam sifat terma serta nilai kekuatan tegangan
dan modulus dalam sifat mekanik. Penambahan kandungan pengisi polimer komposit
sehingga 50 bt.% dapat meningkatkan kesesuaian bahan untuk digunakan pada
peranti elektronik.
Kata kunci:
Polimer komposit; pemodelan pemendapan bersepadu; sifat mekanikal; sifat terma
ABSTRACT
The
addition of filler content into polymer composite can improve electrical and
thermal conductivity, while the resulting high tensile strength and modulus
values have expanded its application in the electronic device industry.
However, the addition of a filler less than 20 wt.% resulted in imperfections
in the dispersion and agglomeration of filler within the composite. The aim of
this study was to identify the influence of the addition of filler content into
composite polymer conductive materials using 3D printing to determine the
electrical, thermal, and mechanical properties. The scope of this study covers
the use of composite polymer materials using Fused Deposition Modeling (FDM) method
in 3D printing. The layer-by-layer element of the 3D printing process produces
complex object structures and its rapid manufacturing processes contributes
significantly to the production of conductive polymer composite. The study found
that electrical conductivity can be improved with the addition of filler
content. In addition, the addition of filler content offers a more effective
surface between the filler surface and the matrix increased the crystallisation temperature (Tc) and crystallisation peak temperature (Tp) in terms of the
thermal properties, as well as the tensile strength and modulus values
in terms of the mechanical properties. The approach provided in this review study was that
the addition of filler content of up to 50 wt.% in polymer composite
can improve the suitability of the material to be used in electronic devices.
Keywords:
Conductive polymer composites; filler content; 3D
printing
REFERENCES
Abbass,
O.A., Salih, A.I. & Al Hurmuzy, O.M. 2020. Study of the mechanical and
physical properties of bio-composite material based on wheat starch and wheat
straw fibers. In IOP Conference Series: Materials Science and Engineering.
IOP. 012075. http://dx.doi.org/10.1088/1757-899X/745/1/012075
Abdalla, F.H., Mutasher, S.A., Khalid, Y.A., Sapuan, S.M., Hamouda,
A.M.S., Sahari, B.B. & Hamdan, M.M. 2007. Design and fabrication of low
cost filament winding machine. Materials & Design 28(1): 234-239.
Agarwal, H., Pandey, R. & Bhat, S.D. 2020. Improved polymer
electrolyte fuel cell performance with membrane electrode assemblies using
modified metallic plate: Comparative study on impact of various coatings. International
Journal of Hydrogen Energy 45(37): 18731-18742.
Al-Saleh, M.H. & Sundararaj, U. 2009. A review of vapor grown carbon
nanofiber/polymer conductive composites. Carbon 47(1): 2-22.
Al Abadi, H., Thai, H.T., Paton-Cole, V. & Patel, V.I. 2018. Elastic
properties of 3D printed fibre-reinforced structures. Composite Structures 193: 8-18.
Alemour, B., Yaacob, M.H., Lim, H.N. & Hassan, M.R. 2018. Review of
electrical properties of graphene conductive composites. International
Journal of Nanoelectronics and Materials 11(4): 371-398.
An, H.J., Kim, J.S., Kim, K.Y., Lim, D.Y. & Kim, D.H. 2014. Mechanical
and thermal properties of long carbon fiber-reinforced polyamide 6 composites. Fibers
and Polymers 15(11): 2355-2359.
Angelopoulos, P.M., Samouhos, M. & Taxiarchou, M., 2021. Functional
fillers in composite filaments for fused filament fabrication; A review. Materials
Today: Proceedings 37: 4031-4043.
Bahrami, B., Ayatollahi, M.R., Sedighi, I., Pérez, M.A. &
Garcia-Granada, A.A. 2020. The effect of in-plane layer orientation on
mixed-mode I-II fracture behavior of 3D-printed poly-carbonate specimens. Engineering
Fracture Mechanics 231: 107018.
Bai, J., Goodridge, R.D., Yuan, S., Zhou, K., Chua, C.K. & Wei, J.
2015. Thermal influence of CNT on the polyamide 12 nanocomposite for selective
laser sintering. Molecules 20(10): 19041-19050.
Bao, S.P. & Tjong, S.C. 2008. Mechanical behaviors of
polypropylene/carbon nanotube nanocomposites: The effects of loading rate and
temperature. Materials Science and Engineering A 485(1-2): 508-516.
Barkoula, N.M., Alcock, B., Cabrera, N.O. & Peijs, T. 2008. Fatigue
properties of highly oriented polypropylene tapes and all-polypropylene
composites. Polymers and Polymer Composites 16(2): 101-113.
Blanco, I. 2020. The use of
composite materials in 3D printing. Journal of Composites Science 4(2):
42.
Blok, L.G., Longana, M.L., Yu, H. & Woods, B.K.S. 2018. An
investigation into 3D printing of fibre reinforced thermoplastic composites. Additive
Manufacturing 22(2010):
176-186.
Borba Marchetto, D., Carneiro Moreira, D. & Ribatski, G. 2019. A
review on polymer heat sinks for electronic cooling applications. In Proceedings of the 17th Brazilian Congress of Thermal Sciences and Engineering.
ENCIT. pp. 25-28.
Cai, C., Tey, W.S., Chen, J., Zhu, W., Liu, X., Liu, T., Zhao, L. &
Zhou, K. 2021. Comparative study on 3D printing of polyamide 12 by selective
laser sintering and multi jet fusion. Journal of Materials Processing
Technology 288: 116882.
Cesano, F., Zaccone, M., Armentano, I., Cravanzola, S., Muscuso, L.,
Torre, L., Kenny, J.M., Monti, M. & Scarano, D. 2016. Relationship between
morphology and electrical properties in PP/MWCNT composites: Processing-induced
anisotropic percolation threshold. Materials Chemistry and Physics 180:
284-290.
Chen, Y., Jansen, K., Zhang, H., Romero Rodriguez, C., Gan, Y.,
Çopuroğlu, O. & Schlangen, E. 2020. Effect of printing parameters on
interlayer bond strength of 3D printed limestone-calcined clay-based cementitious
materials: An experimental and numerical study. Construction and Building
Materials 262: 120094.
Choi, Y.H., Kim, C.M., Jeong, H.S. & Youn, J.H. 2016. Influence of bed
temperature on heat shrinkage shape error in FDM additive manufacturing of the
ABS-engineering plastic. World Journal of Engineering and Technology 4(3): 186-192.
Costa, M.L., Rezende, M.C. & de Almeida, S.F.M. 2006. Effect of void
content on the moisture absorption in polymeric composites. Polymer -
Plastics Technology and Engineering 45(6): 691-698.
Çuvalci, H., Erbay, K. & İpek, H. 2014. Investigation of the
effect of glass fiber content on the mechanical properties of cast polyamide. Arabian
Journal for Science and Engineering 39(12): 9049-9056.
El-Safty, S. 2018. Effect of speed of loading on compressive strength and
flexural strength of dental resin-composites. Egyptian Dental Journal 64(1): 625-633.
Espera, A.H., Dizon, J.R.C., Chen, Q. & Advincula, R.C. 2019.
3D-printing and advanced manufacturing for electronics. Progress in Additive
Manufacturing 4(3): 245-267.
Ganesh Sarvankar, S. & Yewale, S.N. 2019. Additive manufacturing in automobile
industry. International Journal of Research in Aeronautical and Mechanical
Engineering 7(4): 1-10.
Garzón, C. & Palza, H. 2014. Electrical behavior of polypropylene
composites melt mixed with carbon-based particles: Effect of the kind of
particle and annealing process. Composites Science and Technology 99:
117-123.
Gebisa, A.W. & Lemu, H.G. 2019. Influence of 3D printing FDM process
parameters on tensile property of ultem 9085. Procedia Manufacturing 30:
331-338.
Gong, M., Zhang, L. & Wan, P. 2020. Polymer nanocomposite meshes for
flexible electronic devices. Progress in Polymer Science 107: 101279.
He, Z., Yan, Y. & Zhang, Z. 2020. Thermal management and temperature
uniformity enhancement of electronic devices by micro heat sinks: A review. Energy 261: 119223.
Hemanth, R., Sekar, M. & Suresha, B. 2014. Effects of fibers and
fillers on mechanical properties of thermoplastic composites. Indian Journal
of Advances in Chemical Science 2: 28-35.
Hendlmeier, A., Simon, Ž., Chutani, A. & Henderson, L.C. 2020.
Generating short carbon fiber polyamide-6 composites from continuous carbon
fiber - A preliminary examination of surface treatment and sizing effects. Composites
Part A: Applied Science and Manufacturing 138: 106058.
Hine, P., Broome, V. & Ward, I. 2005. The incorporation of carbon
nanofibres to enhance the properties of self reinforced, single polymer
composites. Polymer 46(24): 10936-10944.
Hoerber, J., Glasschroeder, J., Pfeffer, M., Schilp, J., Zaeh, M. &
Franke, J. 2014. Approaches for additive manufacturing of 3D electronic
applications. Procedia CIRP 17: 806-811.
Hu, D., Liu, H. & Ma, W. 2020. Rational design of nanohybrids for
highly thermally conductive polymer composites. Composites Communications 21: 100427.
Idumah, C.I., Ogbu, J.E., Ndem, J.U. & Obiana, V. 2019. Influence of
chemical modification of kenaf fiber on xGNP-PP nano-biocomposites. SN
Applied Sciences 1(10): 1-11.
Ingrassia, T., Nigrelli, V., Ricotta, V. & Tartamella, C. 2017.
Process parameters influence in additive manufacturing. In Advances on
Mechanics, Design Engineering and Manufacturing, edited by Eynard, B.,
Salvatore, V.N., Oliveri, M., Peris-Fajarnes, G. & Rizzuti, S. New York:
Springer. pp. 261-270.
Iragi, M., Pascual-González, C., Esnaola, A., Lopes, C.S. & Aretxabaleta,
L. 2019. Ply and interlaminar behaviours of 3D printed continuous carbon
fibre-reinforced thermoplastic laminates; effects of processing conditions and
microstructure. Additive Manufacturing 30: 100884.
Jankovics, D. & Barari, A. 2019. Customization of automotive
structural components using additive manufacturing and topology optimization. IFAC-PapersOnLine 52(10): 212-217.
Karsli, N.G. & Aytac, A. 2013. Tensile and thermomechanical properties
of short carbon fiber reinforced polyamide 6 composites. Composites Part B:
Engineering 51: 270-275.
Kausar, A. 2020. Advances in carbon fiber reinforced polyamide-based
composite materials. Advances in Materials Science 19(4): 67-82.
Khosravani, M.R. & Reinicke, T. 2020. Effects of raster layup and
printing speed on strength of 3D-printed structural components. Procedia
Structural Integrity 28: 720-725.
Lall, P., Dornala, K., Lowe, R. & Foley, J. 2016. Survivability
assessment of electronics subjected to mechanical shocks up to 25,000g. In Proceedings
of the 15th InterSociety Conference on Thermal and Thermomechanical Phenomena
in Electronic Systems, ITherm 2016. Iterms. pp. 507-518.
Letcher, T. 2016. Imece2014-39379 material property testing of 3D-printed
specimen. In Proceedings of the ASME 2014 International Mechanical
Engineering Congress and Exposition. IMECE2014. pp. 1-8.
Liang, J.Z., Du, Q., Tsui, G.C.P. & Tang, C.Y. 2016. Tensile
properties of graphene nano-platelets reinforced polypropylene composites. Composites
Part B: Engineering 95: 166-171.
Liao, S.H., Yen, C.Y., Weng, C.C., Lin, Y.F., Ma, C.C.M., Yang, C.H.,
Tsai, M.C., Yen, M.Y., Hsiao, M.C., Lee, S.J., Xie, X.F. & Hsiao, Y.H.
2008. Preparation and properties of carbon nanotube/polypropylene nanocomposite
bipolar plates for polymer electrolyte membrane fuel cells. Journal of Power
Sources 185(2): 1225-1232.
Lieneke, T., Denzer, V., Adam, G.A.O. & Zimmer, D. 2016. Dimensional
tolerances for additive manufacturing: Experimental investigation for fused
deposition modeling. Procedia CIRP 43: 286-291.
Lima, D.D., Campo, K.N., Button, S.T. & Caram, R. 2020. 3D thixo-printing:
A novel approach for additive manufacturing of biodegradable Mg-Zn alloys. Materials
and Design 196: 109161.
Logakis, E., Pandis, C., Kyritsis, A., Pissis, P., Miuík, M., Omastová, M.
& Pionteck, J. 2010. Indirect methods for the determination of optimal
processing conditions in conductive polypropylene/carbon nanotubes composites. Chemical
Physics Letters 498(1-3): 125-128.
Lumpe, T.S., Mueller, J. & Shea, K. 2019. Tensile properties of
multi-material interfaces in 3D printed parts. Materials and Design 162:
1-9.
Lupone, F., Padovano, E., Veca, A., Franceschetti, L. & Badini, C.
2020. Innovative processing route combining fused deposition modelling and
laser writing for the manufacturing of multifunctional polyamide/carbon fiber
composites. Materials and Design 193: 108869.
Matsuzaki, R., Ueda, M., Namiki, M., Jeong, T.K., Asahara, H., Horiguchi,
K., Nakamura, T., Todoroki, A. & Hirano, Y. 2016. Three-dimensional
printing of continuous-fiber composites by in-nozzle impregnation. Scientific
Reports 6(1): 1-7.
McLouth, T.D., Severino, J.V., Adams, P.M., Patel, D.N. & Zaldivar,
R.J. 2017. The impact of print orientation and raster pattern on fracture
toughness in additively manufactured ABS. Additive Manufacturing 18:
103-109.
Mortazavian, S., Fatemi, A. & Khosrovaneh, A. 2015. Effect of water
absorption on tensile and fatigue behaviors of two short glass fiber reinforced
thermoplastics. SAE International Journal of Materials and Manufacturing 8(2): 435-443.
Mu, Q., Wang, L., Dunn, C.K., Kuang, X., Duan, F., Zhang, Z., Qi, H.J.
& Wang, T. 2017. Digital light processing 3D printing of conductive complex
structures. Additive Manufacturing 18: 74-83.
Nurul, M.S. & Mariatti, M. 2013. Effect of thermal conductive fillers
on the properties of polypropylene composites. Journal of Thermoplastic
Composite Materials 26(5): 627-639.
O’ Connor, H.J. & Dowling, D.P. 2020. Comparison between the
properties of polyamide 12 and glass bead filled polyamide 12 using the multi
jet fusion printing process. Additive Manufacturing 31: 100961.
Oksman, K., Mathew, A.P., Långström, R., Nyström, B. & Joseph, K.
2009. The influence of fibre microstructure on fibre breakage and mechanical
properties of natural fibre reinforced polypropylene. Composites Science and
Technology 69(11-12): 1847-1853.
Parlevliet, P.P., Bersee, H.E.N. & Beukers, A. 2006. residual stresses
in thermoplastic composites-a study of the literature-part i: Formation of
residual stresses. Composites Part A: Applied Science and Manufacturing 37(11): 1847-1857.
Patti, A., Barretta, R., Marotti de Sciarra, F., Mensitieri, G., Menna, C.
& Russo, P. 2015. Flexural properties of multi-wall carbon
nanotube/polypropylene composites: Experimental investigation and nonlocal
modeling. Composite Structures 131: 282-289.
Penumakala, P.K., Santo, J. & Thomas, A. 2020. A critical review on
the fused deposition modeling of thermoplastic polymer composites. Composites
Part B: Engineering 201: 108336.
Radzuan, N.A.M., Gunasegran, M. & Naima, N. 2021. The effect of
graphene addition on the Young ’ s modulus and tensile strength of kenaf fibre
composites. In IOP Conference Series: Materials Science and
Engineering. p. 012006.
Rajak, D.K., Pagar, D.D., Menezes, P.L. & Linul, E. 2019.
Fiber-reinforced polymer composites: Manufacturing, properties, and
applications. Polymers 11(10): 1667.
Rassmann, S., Reid, R.G. & Paskaramoorthy, R. 2010. Effects of
processing conditions on the mechanical and water absorption properties of
resin transfer moulded kenaf fibre reinforced polyester composite laminates. Composites
Part A: Applied Science and Manufacturing 41(11): 1612-1619.
Razali, N., Aseri, N.A.S., Dalingam, S. & Kamarolzaman, A.A. 2019. The
effect of fibre loading on the physical and mechanical properties of pineapple
leaf fibre-reinforced biodegradable composites. Journal of Physics:
Conference Series 1349(1): 8.
Ruan, K., Shi, X., Guo, Y. & Gu, J. 2020. Interfacial thermal
resistance in thermally conductive polymer composites: A review. Composites
Communications 22: 100518.
Sabri, M.A.M., Sulong, A.B., Chin, F.K. & Sahari, J. 2012. Effect of
corrossion on the electrical conductivity of metals and polymer composite. Jurnal
Teknologi 59(2): 81-85.
Saeed, K., McIlhagger, A., Harkin-Jones, E., Kelly, J. & Archer, E.
2020. Predication of the in-plane mechanical properties of continuous carbon
fibre reinforced 3D printed polymer composites using classical laminated-plate
theory. Composite Structures 259: 113226.
Saleh, E. 2019. 3D and 4D printed
polymer composites for electronic applications. In 3D and 4D Printing of
Polymer Nanocomposite Materials: Processes, Applications, and Challenges,
edited by Sadasivuni, K.K., Deshmukh, K. & Al-Maadeed, M.A.S.A. Amsterdam:
Elsevier Inc. pp. 505-525.
Sandler, J.K.W., Pegel, S., Cadek, M., Gojny, F., Van Es, M., Lohmar, J.,
Blau, W.J., Schulte, K., Windle, A.H. & Shaffer, M.S.P. 2004. A comparative
study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and
nanofibres. Polymer 45(6): 2001-2015.
Sanei, S.H.R. & Popescu, D. 2020. 3D-printed carbon fiber reinforced
polymer composites: A systematic review. Journal of Composites Science 4(3): 98.
Sang, L., Han, S., Li, Z., Yang, X. & Hou, W. 2019. Development of
short basalt fiber reinforced polylactide composites and their feasible evaluation
for 3D printing applications. Composites Part B: Engineering 164:
629-639.
Sezer, H.K. & Eren, O. 2019. FDM 3D printing of MWCNT re-inforced ABS
nano-composite parts with enhanced mechanical and electrical properties. Journal
of Manufacturing Processes 37: 339-347.
Sharma, M., Rao, I.M. & Bijwe, J. 2009. Influence of orientation of
long fibers in carbon fiber-polyetherimide composites on mechanical and
tribological properties. Wear 267(5-8): 839-845.
Sharma, S.K., Gupta, V., Tandon, R.P. & Sachdev, V.K. 2016. Synergic
effect of graphene and MWCNT fillers on electromagnetic shielding properties of
graphene-MWCNT/ABS nanocomposites. RSC Advances 6(22): 18257-18265.
Sreenivas, H.T., Krishnamurthy, N. & Arpitha, G.R. 2020. A
comprehensive review on light weight kenaf fiber for automobiles. International
Journal of Lightweight Materials and Manufacture 3(4): 328-337.
Sui, G., Zhong, W.H., Fuqua, M.A. & Ulven, C.A. 2007. Crystalline
structure and properties of carbon nanofiber composites prepared by melt
extrusion. Macromolecular Chemistry and Physics 208(17): 1928-1936.
Taherian, R., Hadianfard, M.J. & Golikand, A.N. 2013. Manufacture of a
polymer-based carbon nanocomposite as bipolar plate of proton exchange membrane
fuel cells. Materials & Design 49: 242-251.
Taketa, I., Kalinka, G., Gorbatikh, L., Lomov, S.V. & Verpoest, I.
2020. Influence of cooling rate on the properties of carbon fiber
unidirectional composites with polypropylene, polyamide 6, and polyphenylene
sulfide matrices. Advanced Composite Materials 29(1): 101-113.
Tambrallimath, V., Keshavamurthy, R.D.S., Koppad, P.G. & Kumar, G.S.P.
2019. Thermal behavior of PC-ABS based graphene filled polymer nanocomposite
synthesized by FDM process. Composites Communications 15: 129-134.
Tan, Y.L., Huang, C.H., Guo, Z.X. & Yu, J. 2018. Morphology and mechanical properties of
polyamide 6/polystyrene blends prepared by diffusion and subsequent
polymerization of styrene in polyamide 6 pellets. Materials 11(5): 776.
Tao, Q., Pinter, G. & Krivec, T. 2017. Influence of cooling rate and
annealing on the DSC Tg of an epoxy resin. Microelectronics Reliability 78: 396-400.
Turaka, S. & Vijaya Kumar Reddy, K. 2019. Effect of hybrid
MWCNTs/graphene on mechanical properties of reinforced unidirectional
E-glass/epoxy composite. Materials Today: Proceedings 18: 1540-1547.
Ueda, M., Kishimoto, S., Yamawaki, M., Matsuzaki, R., Todoroki, A.,
Hirano, Y. & Le Duigou, A. 2020. 3D compaction printing of a continuous
carbon fiber reinforced thermoplastic. Composites Part A: Applied Science
and Manufacturing 137: 105985.
Unterweger, C., Mayrhofer, T., Piana, F., Duchoslav, J., Stifter, D.,
Poitzsch, C. & Fürst, C. 2020. Impact of fiber length and fiber content on
the mechanical properties and electrical conductivity of short carbon fiber
reinforced polypropylene composites. Composites Science and Technology 188: 107998.
Verma, P., Saini, P. & Choudhary, V. 2015. Designing of carbon
nanotube/polymer composites using melt recirculation approach: Effect of aspect
ratio on mechanical, electrical and EMI shielding response. Materials and
Design 88: 269-277.
Wang, X., Zhao, L., Fuh, J.Y.H. & Lee, H.P. 2019. Effect of porosity
on mechanical properties of 3D printed polymers: Experiments and
micromechanical modeling based on X-ray computed tomography analysis. Polymers 11(7): 1154.
Wasti, S. & Adhikari, S. 2020. Use of biomaterials for 3D printing by
fused deposition modeling technique: A review. Frontiers in Chemistry 8:
315.
Weiss, K.P., Bagrets, N., Lange, C., Goldacker, W. & Wohlgemuth, J.
2015. Thermal and mechanical properties of selected 3D printed thermoplastics
in the cryogenic temperature regime. In IOP Conference Series: Materials
Science and Engineering. p. 012022.
Yao, T., Ye, J., Deng, Z., Zhang, K., Ma, Y. & Ouyang, H. 2020.
Tensile failure strength and separation angle of FDM 3D printing PLA material:
Experimental and theoretical analyses. Composites Part B: Engineering 188: 107894.
Ye, W., Lin, G., Wu, W., Geng, P., Hu, X., Gao, Z. & Zhao, J. 2019.
Separated 3D printing of continuous carbon fiber reinforced thermoplastic
polyimide. Composites Part A: Applied Science and Manufacturing 121:
457-464.
Zaghloul, M.M.Y., Zaghloul, M.Y.M. & Zaghloul, M.M.Y. 2017.
Experimental and modeling analysis of mechanical-electrical behaviors of
polypropylene composites filled with graphite and MWCNT fillers. Polymer
Testing 63: 467-474.
Zare, Y. & Rhee, K.Y. 2020. Effects of carbon nanotubes and interphase
properties on the interfacial conductivity and electrical conductivity of
polymer nanocomposites. Polymer International 69(4): 413-422.
Zeng, L., Li, P., Yao, Y., Niu, B., Niu, S. & Xu, B. 2020. Recent
progresses of 3D printing technologies for structural energy storage devices. Materials
Today Nano 12: 1-13.
Zhang, M., Lu, S., Xu, E., He, M. & Yu, J. 2015. A new method for
preparation of low melting point polyamide-6 (LPA6) and properties of
compatibilized blends of LPA6/glass beads/styrene and maleic anhydride
copolymer. Science and Engineering of Composite Materials 22(6):
599-606.
Zhou, Z., Wang, S., Zhang, Y. & Zhang, Y. 2006. Effect of different
carbon fillers on the properties of PP composites: Comparison of carbon black
with multiwalled carbon nanotubes. Journal of Applied Polymer Science 102(5): 4823-4830.
* Corresponding
author; email: afiqah@ukm.edu.my
|