Sains Malaysiana 51(6)(2022):
1821-1832
http://doi.org/10.17576/jsm-2022-5106-18
Comparison of Non-Alcoholic Fatty Liver
Disease (NAFLD) Model using Diet-Induced Nafld Mice with Genetically Modified
Mice
(Perbandingan Model Penyakit Hati Berlemak
(NAFLD) menggunakan Tikus Nafld Diet-Teraruh dengan Tikus Terubah Suai secara
Genetik)
MOHD DANIAL MOHD EFENDY GOON1,2, SHARANIZA
AB RAHIM3, NORMALA ABD LATIP4, MARDIANA ABDUL AZIZ5,
NORIZAL MOHD NOOR5, LEW SOOK WEIH6, MUSALMAH MAZLAN3 & SITI HAMIMAH SHEIKH ABDUL KADIR1,2,3,*
1Institute
of Molecular Medicine Biotechnology, Faculty of Medicine, Universiti Teknologi
MARA (UiTM), Cawangan Selangor, 47000 Sungai Buloh, Selangor Darul Ehsan, Malaysia
2Institute
of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Faculty of
Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000 Sungai
Buloh, Selangor Darul Ehsan,
Malaysia
3Department
of Biochemistry, Faculty of Medicine, Universiti Teknologi MARA (UiTM),
Cawangan Selangor, 47000 Sungai Buloh, Selangor Darul Ehsan, Malaysia
4Atta-ur-Rahman
Institute for Natural Products Discovery (AuRIns), Faculty of Pharmacy,
Universiti Teknologi MARA (UiTM), Cawangan Selangor, 42300 Puncak Alam,
Selangor Darul Ehsan,
Malaysia
5Department
of Pathology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan
Selangor, 47000 Sungai Buloh, Selangor Darul Ehsan, Malaysia
6Department
of Pediatrics, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan
Selangor, 47000 Sungai Buloh, Selangor Darul Ehsan, Malaysia
Received: 11 August
2021/Accepted: 5 November 2021
ABSTRACT
Prevalence of
non-alcoholic fatty liver disease (NAFLD) is increasing steadily every year
affecting all population both Western and Asian countries. The current
treatments available for NAFLD are non-conclusive warranting newer
effective pharmacological agents. Newly formulated agents require prior testing
using animal models. However, in developing countries, these models are often
costly. The possibility of using more affordable animal model in local settings
should be investigated. In this study, ten Institute of Cancer Research (ICR)
and seven B6.Cg-LepOb/J
leptin-knockout (JAX) male mice were recruited. Five ICR and all JAX mice were
subjected to high-fat diet (60% kcal fat) and remaining ICR mice were given
standard diet (SD) for six weeks. Body weight and food intake were measured
weekly while abdominal circumference, random blood glucose and liver span were
measured at the end of the HFD study. Livers collected were subjected to histology
assessment. Compared to ICR group, JAX group presented with significantly
higher body weight (58 ± 0.72, p<0.05), larger body weight changes (16.57 ±
0.81, p<0.05), more HFD intake (197.14 ± 0.812, p<0.05) and larger abdominal
circumference (11.79 ± 0.34: p<0.05). Liver from JAX group appeared with
general steatosis and presentation of high-grade panacinar steatosis, low
number of lobular inflammations and minimal fibrosis. Liver of ICR mice showed
Zone 3 steatosis with high number of lobular inflammations without fibrosis.
The NAFLD characteristics presented in JAX group suggested that B6.Cg-LepOb/J mice developed characteristics of NAFLD
resembling human while ICR is suitable NAFLD model resembling human population
resilient towards NAFLD.
Keywords: Animal model; B6.Cg-LepOb/J
strain; high-fat diet; histology; Institute of Cancer Research strain; NAFLD
ABSTRAK
Kelaziman penyakit hati berlemak atau
dikenali sebagai penyakit hati berlemak bukan alkohol (NAFLD) meningkat setiap
tahun dalam kalangan populasi negara Barat dan Asia. Pada masa ini, rawatan
bagi penyakit ini adalah tidak khusus, lalu mendorong kepada penyelidikan dalam
mendapatkan agen rawatan yang berkesan. Rumusan agen rawatan yang baharu perlu
dikaji menggunakan model haiwan. Penggunaan model haiwan dalam kalangan negara
membangun membabitkan kos yang tinggi. Oleh itu, penyelidikan menggunakan model
haiwan mengikut tetapan tempatan perlu dikaji. Dalam kajian ini, sepuluh ekor
tikus jantan dan tujuh ekor tikus jantan B6.Cg-LepOb/J
tanpa leptin (JAX) diambil daripada Institut Penyelidikan Kanser (ICR). Lima
daripada tikus ICR dan kesemua tikus JAX diberi diet lemak tinggi (HFD)
mengandungi 60% kcal daripada lemak selama enam minggu, dan selebihnya tikus
ICR diberi diet piawai (SD). Berat badan dan pengambilan diet diukur setiap
minggu manakala ukur lilit abdomen, bacaan glukosa darah rawak dan panjang hati
diukur pada akhir tempoh kajian. Hati yang diperoleh daripada setiap tikus
menjalani analisis histologi. Berbanding dengan kumpulan ICR, kumpulan JAX
menunjukkan berat badan lebih berat (58 ± 0.72, p<0.05), perubahan berat
badan lebih ketara (16.57 ± 0.81, p<0.05), pengambilan HFD lebih banyak
(197.14 ± 0.812, p<0.05) dan ukur lilit abdomen lebih besar (11.79 ± 0.34:
p<0.05). Analisis histologi kumpulan JAX menunjukkan kehadiran lemak
(steatosis) dalam hati bertaraf tinggi, bilangan radang lobular dan parut yang
rendah. Hati daripada kumpulan ICR menunjukkan gred 3 steatosis dan bilangan
radang lobular yang tinggi. Ciri-ciri NAFLD yang ditonjolkan oleh kumpulan JAX
menunjukkan model ini lebih mirip ke ciri-ciri NAFLD manusia manakala kumpulan
ICR menunjukkan ciri-ciri ke arah manusia yang mempunyai kerintangan terhadap
NAFLD.
Kata kunci: Diet lemak tinggi; histologi; model haiwan; NAFLD; strain B6.Cg-LepOb/J;
strain Institut
Penyelidikan Kanser
REFERENCES
Anderson, E.L.,
Howe, L.D., Jones, H.E., Higgins, J.P., Lawlor, D.A. & Fraser, A. 2015. The
prevalence of non-alcoholic fatty liver disease in children and adolescents: A
systematic review and meta-analysis. PLoS
ONE 10(10): e0140908.
Avtanski, D.,
Pavlov, V.A., Tracey, K.J. & Poretsky, L. 2019. Characterization of
inflammation and insulin resistance in high‐fat diet‐induced male
C57BL/6J mouse model of obesity. Animal Models and Experimental Medicine 2(4): 252-258.
B’chir, W.,
Dufour, C.R., Ouellet, C., Yan, M., Tam, I.S., Andrzejewski, S., Xia, H.,
Nabata, K., St-Pierre, J. & Giguère, V. 2018. Divergent role of
estrogen-related receptor α in lipid-and fasting-induced hepatic steatosis
in mice. Endocrinology 159(5): 2153-2164.
Besse-Patin, A.,
Léveillé, M., Oropeza, D., Nguyen, B.N., Prat, A. & Estall, J.L. 2017.
Estrogen signals through peroxisome proliferator-activated Receptor−
γ coactivator 1α to reduce oxidative damage associated with
diet-induced fatty liver disease. Gastroenterology 152(1): 243-256.
Brix, A.E.,
Elgavish, A., Nagy, T.R., Gower, B.A., Rhead, W.J. & Wood, P.A. 2002.
Evaluation of liver fatty acid oxidation in the leptin-deficient obese mouse. Molecular
Genetics and Metabolism 75(3): 219-226.
Chalasani, N.,
Younossi, Z., Lavine, J.E., Charlton, M., Cusi, K., Rinella, M., Harrison,
S.A., Brunt, E.M. & Sanyal, A.J. 2018. The diagnosis and management of
nonalcoholic fatty liver disease: Practice guidance from the American
Association for the Study of Liver Diseases. Hepatology 67(1): 328-357.
Chan, W.K., Tan,
A.T.B., Vethakkan, S.R., Tah, P.C., Vijayananthan, A. & Goh, K.L. 2015. Low
physical activity and energy dense Malaysian foods are associated with non-alcoholic
fatty liver disease in centrally obese but not in non-centrally obese patients
with diabetes mellitus. Asia Pacific Journal of Clinical Nutrition 24(2): 289-298.
Chang, Y., Jung,
H.S., Cho, J., Zhang, Y., Yun, K.E., Lazo, M., Pastor-Barriuso, R., Ahn, J.,
Kim, C.W., Rampal, S. & Cainzos-Achirica, M. 2016. Metabolically healthy
obesity and the development of nonalcoholic fatty liver disease. Official
Journal of the American College of Gastroenterology 111(8): 1133-1140.
Chiba, T.,
Suzuki, S., Sato, Y., Itoh, T. & Umegaki, K. 2016. Evaluation of methionine
content in a high-fat and choline-deficient diet on body weight gain and the
development of non-alcoholic steatohepatitis in mice. PLoS ONE 11(10): e0164191.
Clapper, J.R.,
Hendricks, M.D., Gu, G., Wittmer, C., Dolman, C.S., Herich, J., Athanacio, J.,
Villescaz, C., Ghosh, S.S., Heilig, J.S. & Lowe, C. 2013. Diet-induced
mouse model of fatty liver disease and nonalcoholic steatohepatitis reflecting
clinical disease progression and methods of assessment. American Journal of
Physiology-Gastrointestinal and Liver Physiology 305(7): G483-G495.
Domitrović,
R., Jakovac, H., Tomac, J. & Šain, I. 2009. Liver fibrosis in mice induced
by carbon tetrachloride and its reversion by luteolin. Toxicology and
Applied Pharmacology 241(3): 311-321.
Duarte, J.A.,
Carvalho, F., Pearson, M., Horton, J.D., Browning, J.D., Jones, J.G. &
Burgess, S.C. 2014. A high-fat diet suppresses de novo lipogenesis and desaturation but not elongation and
triglyceride synthesis in mice [S]. Journal of Lipid Research 55(12):
2541-2553.
European
Association for the Study of the Liver and European Association for the Study
of Diabetes (EASD). 2016. EASL-EASD-EASO Clinical Practice Guidelines for the
management of non-alcoholic fatty liver disease. Obesity Facts 9(2):
65-90.
Estes, C.,
Anstee, Q.M., Arias-Loste, M.T., Bantel, H., Bellentani, S., Caballeria, J.,
Colombo, M., Craxi, A., Crespo, J., Day, C.P., Eguchi, Y., Geier, A.,
Kondili, L.A., Kroy, D.C., Lazarus,
J.V., Loomba, R., Manns, M.P., Marchesini, G., Nakajima, A., Negro, F., Petta,
S., Ratziu, V., Romero-Gomez, M., Sanyal, A., Schattenberg, J.M., Tacke, F., Tanaka,
J., Trautwein, C., Lai, W., Zeuzem, S. & Razavi, H. 2018. Modeling NAFLD
disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom,
and United States for the period 2016-2030. Journal of Hepatology 69(4):
896-904.
Fakhry, T.K.,
Mhaskar, R., Schwitalla, T., Muradova, E., Gonzalvo, J.P. & Murr, M.M.
2019. Bariatric surgery improves nonalcoholic fatty liver disease: A
contemporary systematic review and meta-analysis. Surgery for Obesity and
Related Diseases 15(3): 502-511.
Fraulob, J.C.,
Ogg-Diamantino, R., Fernandes-Santos, C., Aguila, M.B. &
Mandarim-de-Lacerda, C.A. 2010. A mouse model of metabolic syndrome: Insulin
resistance, fatty liver and non-alcoholic fatty pancreas disease (NAFPD) in
C57BL/6 mice fed a high fat diet. Journal of Clinical Biochemistry and
Nutrition 1004080019-1004080019.
Gerbaix, M.,
Metz, L., Ringot, E. & Courteix, D. 2010. Visceral fat mass determination
in rodent: Validation of dual-energy X-ray absorptiometry and anthropometric
techniques in fat and lean rats. Lipids in Health and Disease 9(1): 1-9.
Guillaume, M.,
Riant, E., Fabre, A., Raymond‐Letron, I., Buscato, M., Davezac, M.,
Tramunt, B., Montagner, A., Smati, S., Zahreddine, R. & Palierne, G. 2019.
Selective liver estrogen receptor α modulation prevents steatosis,
diabetes, and obesity through the anorectic growth differentiation factor 15
hepatokine in mice. Hepatology Communications 3(7): 908-924.
Hebbard, L.
& George, J. 2011. Animal models of nonalcoholic fatty liver disease. Nature Reviews Gastroenterology &
Hepatology 8(1): 35-44.
Hung, C.K. &
Bodenheimer, H.C. 2018. Current treatment of nonalcoholic fatty liver
disease/nonalcoholic steatohepatitis. Clinics
in Liver Disease 22(1): 175-187.
Kleiner, D.E.,
Brunt, E.M., Van Natta, M., Behling, C., Contos, M.J., Cummings, O.W., Ferrell,
L.D., Liu, Y.C., Torbenson, M.S., Unalp-Arida, A. & Yeh, M. 2005. Design
and validation of a histological scoring system for nonalcoholic fatty liver
disease. Hepatology 41(6): 1313-1321.
Knuth, N.D.,
Johannsen, D.L., Tamboli, R.A., Marks‐Shulman, P.A., Huizenga, R., Chen,
K.Y., Abumrad, N.N., Ravussin, E. & Hall, K.D. 2014. Metabolic adaptation
following massive weight loss is related to the degree of energy imbalance and
changes in circulating leptin. Obesity 22(12): 2563-2569.
Kristiansen,
M.N.B., Veidal, S.S., Rigbolt, K.T.G., Tølbøl, K.S., Roth, J.D., Jelsing, J.,
Vrang, N. & Feigh, M. 2016. Obese diet-induced mouse models of nonalcoholic
steatohepatitis-tracking disease by liver biopsy. World Journal of
Hepatology 8(16): 673.
Kulkarni, N.M.,
Jaji, M.S., Shetty, P., Kurhe, Y.V., Chaudhary, S., Vijaykant, G., Raghul, J.,
Vishwakarma, S.L., Rajesh, B.N., Mookkan, J. & Krishnan, U.M. 2015. A novel
animal model of metabolic syndrome with non-alcoholic fatty liver disease and
skin inflammation. Pharmaceutical Biology 53(8): 1110-1117.
Leoni, S.,
Tovoli, F., Napoli, L., Serio, I., Ferri, S. & Bolondi, L. 2018. Current
guidelines for the management of non-alcoholic fatty liver disease: A
systematic review with comparative analysis. World Journal of Gastroenterology 24(30): 3361.
Li, J., Wu, H.,
Liu, Y. & Yang, L. 2020. High fat diet induced obesity model using four
strains of mice: Kunming, C57BL/6, BALB/c and ICR. Experimental Animals 69(3): 326-335.
Liang, W.,
Menke, A.L., Driessen, A., Koek, G.H., Lindeman, J.H., Stoop, R., Havekes,
L.M., Kleemann, R. & van den Hoek, A.M. 2014. Establishment of a general
NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS ONE 9(12): e115922.
Liu, Y., Meyer,
C., Xu, C., Weng, H., Hellerbrand, C., ten Dijke, P. & Dooley, S. 2013.
Animal models of chronic liver diseases. American Journal of Physiology-Gastrointestinal and Liver Physiology 304(5): G449-G468.
Ma, L.L., Yuan,
Y.Y., Zhao, M., Zhou, X.R., Jehangir, T., Wang, F.Y., Xi, Y. & Bu, S.Z.
2018. Mori Cortex extract ameliorates nonalcoholic fatty liver disease (NAFLD)
and insulin resistance in high-fat-diet/streptozotocin-induced type 2 diabetes
in rats. Chinese Journal of Natural Medicines 16(6): 411-417.
Machado, M.V.,
Michelotti, G.A., Xie, G., de Almeida, T.P., Boursier, J., Bohnic, B., Guy,
C.D. & Diehl, A.M. 2015. Mouse models of diet-induced nonalcoholic
steatohepatitis reproduce the heterogeneity of the human disease. PLoS ONE 10(5): e0127991.
Nagarajan, P.,
Kumar, M.J.M., Venkatesan, R., Majundar, S.S. & Juyal, R.C. 2012.
Genetically modified mouse models for the study of nonalcoholic fatty liver
disease. World Journal of Gastroenterology 18(11): 1141.
Obernier, J.A.
& Baldwin, R.L. 2006. Establishing an appropriate period of acclimatization
following transportation of laboratory animals. ILAR Journal 47(4):
364-369.
Palmisano, B.T.,
Zhu, L. & Stafford, J.M. 2017. Role of estrogens in the regulation of liver
lipid metabolism. Advances in Experimental Medicine and Biology 1043:
227-256.
Pawar, S.V.,
Zanwar, V.G., Choksey, A.S., Mohite, A.R., Jain, S.S., Surude, R.G.,
Contractor, Q.Q., Rathi, P.M., Verma, R.U. & Varthakavi, P.K. 2017. Most
overweight and obese Indian children have nonalcoholic fatty liver disease. Annals
of Hepatology 15(6): 853-861.
Ricci, C.,
Baumgartner, J., Malan, L. & Smuts, C.M. 2020. Determining sample size
adequacy for animal model studies in nutrition research: Limits and ethical
challenges of ordinary power calculation procedures. International Journal
of Food Sciences and Nutrition 71(2): 256-264.
Salsamendi, J.,
Pereira, K., Kang, K. & Fan, J. 2015. Minimally invasive percutaneous
endovascular therapies in the management of complications of non-alcoholic
fatty liver disease (NAFLD): A case report. Journal of Radiology Case
Reports 9(9): 36.
Sanyal, A.J.,
Chalasani, N., Kowdley, K.V., McCullough, A., Diehl, A.M., Bass, N.M.,
Neuschwander-Tetri, B.A., Lavine, J.E., Tonascia, J., Unalp, A. & Van
Natta, M. 2010. Pioglitazone, vitamin E, or placebo for nonalcoholic
steatohepatitis. New England Journal of Medicine 362(18): 1675-1685.
Sayiner, M.,
Koenig, A., Henry, L. & Younossi, Z.M. 2016. Epidemiology of nonalcoholic
fatty liver disease and nonalcoholic steatohepatitis in the United States and
the rest of the world. Clinics in Liver Disease 20(2): 205-214.
Solinas, P.,
Isola, M., Lilliu, M.A., Conti, G., Civolani, A., Demelia, L., Loy, F. &
Isola, R. 2014. Animal models are reliably mimicking human diseases? A
morphological study that compares animal with human NAFLD. Microscopy
Research and Technique 77(10): 790-796.
Sridharan, K.,
Sivaramakrishnan, G., Sequeira, R.P. & Elamin, A. 2018. Pharmacological
interventions for non-alcoholic fatty liver disease: A systematic review and
network meta-analysis. Postgraduate Medical Journal 94(1116): 556-565.
Van Herck, M.A.,
Vonghia, L. & Francque, S.M. 2017. Animal models of nonalcoholic fatty
liver disease - A starter’s guide. Nutrients 9(10): 1072.
Wang, C., Tao,
Q., Wang, X., Wang, X. & Zhang, X. 2016. Impact of high-fat diet on liver
genes expression profiles in mice model of nonalcoholic fatty liver disease. Environmental
Toxicology and Pharmacology 45: 52-62.
Wang, X.H., Li,
C.Y., Muhammad, I. & Zhang, X.Y. 2016. Fatty acid composition in serum
correlates with that in the liver and non-alcoholic fatty liver disease
activity scores in mice fed a high-fat diet. Environmental Toxicology and
Pharmacology 44: 140-150.
Wu, J. 2016.
Utilization of animal models to investigate nonalcoholic
steatohepatitis-associated hepatocellular carcinoma. Oncotarget 7(27):
42762.
Yahaghi, L.,
Ebrahim-Habibi, A., Hayati-Roodbari, N., Irani, S. & Yaghmaei, P. 2019. A
simple method for inducing nonalcoholic steatohepatitis with fibrosis. Animal
Models and Experimental Medicine 2(4): 282-290.
Yasmeen, R.,
Shen, Q., Lee, A., Leung, J.H., Kowdley, D., DiSilvestro, D.J., Xu, L., Yang,
K., Maiseyeu, A., Bal, N.C. & Periasamy, M. 2018. Epiregulin induces leptin
secretion and energy expenditure in high-fat diet-fed mice. Journal of
Endocrinology 239(3): 377-388.
Younossi, Z.M.,
Marchesini, G., Pinto-Cortez, H. & Petta, S. 2019. Epidemiology of
nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: Implications
for liver transplantation. Transplantation 103(1): 22-27.
Younossi, Z.M.,
Koenig, A.B., Abdelatif, D., Fazel, Y., Henry, L. & Wymer, M. 2016. Global
epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of
prevalence, incidence, and outcomes. Hepatology 64(1): 73-84.
Zhang, Y.H., Ma,
D.Q., Ding, D.P., Li, J., Chen, L.L., Ao, K.J. & Tian, Y.Y. 2018. S100A4
gene is crucial for methionine-choline-deficient diet-induced non-alcoholic
fatty liver disease in mice. Yonsei Medical Journal 59(9): 1064-1071.
*Corresponding author; email:
sitih587@uitm.edu.my
|