Sains Malaysiana 51(7)(2022):
2073-2085
http://doi.org/10.17576/jsm-2022-5107-11
Survivability
and Release Process of Lactobacillus
plantarum SU-LS36 Encapsulated with Native and Modified Taro Starch Under
Simulated Digestive Conditions
(Kemandirian
dan Proses Pelepasan Pengkapsulan Lactobacillus
plantarum SU-LS36 dengan Kanji Taro Asli dan Terubah Suai dalam Keadaan Simulasi
Pencernaan)
R. HARYO BIMO SETIARTO1,2,*, HARSI
DEWANTARI KUSUMANINGRUM1, BETTY SRI LAKSMI JENIE1, TATIK
KHUSNIATI2, MASRUKHIN3 & SULISTIANI2
1Department of Food Science and Technology, Faculty of
Agricultural Technology and Engineering, IPB University, Dramaga Bogor, 16680
West Java, Indonesia
2Research Center for Applied Biology, National Research, and
Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor Km 46, Cibinong Science
Center, Cibinong, Bogor, 16911 West Java, Indonesia
3Research Center for Biosystematics and Evolution, National Research, and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor Km 46, Cibinong Science Center, Cibinong, Bogor, 16911 West Java, Indonesia
Received: 10 July
2021/Accepted: 9 December 2021
ABSTRACT
This
research aimed to evaluate the viability, survivability, and release process of
the encapsulated Lactobacillus plantarum SU-LS36 in the simulated
gastric juice (SGJ), simulated intestinal juice (SIJ), and simulated colon
juice (SCJ). We tested four types of encapsulations: native taro starch (NTS),
modified taro starch (MTS) by heat moisture treatment (HMT),
autoclaving-cooling-2 cycles (AC-2C), and maltodextrin (commercial
encapsulant). We found that L.
plantarum SU-LS36 with AC-2C-modified taro starch (MTS) showed the
highest viability in SGJ (6.95 log CFU/g), SIJ (7.09 log CFU/g), and SCJ (7.85
log CFU/g) after incubation up to 4 h. AC-2C MTS dissolved or released
more rapidly from its encapsulant material in the colon in SCJ than in NTS, HMT
MTS, and maltodextrin. The longest time release of L. plantarum SU-LS36 encapsulated in AC-2C MTS was 3 h in SIJ
conditions, 2 h in SGJ, and the fastest (1 h) in SCJ. The encapsulated L. plantarum SU-LS36 was released
through a dissolution process (SGJ and SCJ) and by pancreatin activity (SIJ).
Conclusively, AC-2C MTS could maintain the viability of L. plantarum SU-LS36 cells to the
colon at 6.04 log CFU/g and fulfilled the minimum requirement of biovalue (MBV)
probiotics set forth by the US FDA (6-7 log CFU/g).
Keywords:
Encapsulation; Lactobacillus plantarum SU-LS36; simulated digestion in-vitro;
survivability; taro starch
ABSTRAK
Penyelidikan
ini bertujuan untuk menilai kebolehhidupan, kemandirian dan proses pembebasan pengkapsulan Lactobacillus plantarum SU-LS36 dalam jus gaster simulasi (SGJ), jus
usus simulasi (SIJ) dan jus kolon simulasi (SCJ). Kami menguji empat jenis
pengkapsulan: kanji ubi keladi asli (NTS), kanji ubi keladi terubah suai (MTS)
dengan rawatan kelembapan haba (HMT), kitaran penyejukan-2 autoklaf (AC-2C) dan
maltodekstrin (pengkapsulan komersial). Kami mendapati bahawa L. plantarum SU-LS36 dengan kanji ubi
keladi (MTS) diubah suai AC-2C telah menunjukkan kebolehhidupan yang tertinggi
dalam SGJ (6.95 log CFU/g), SIJ (7.09 log CFU/g) dan SCJ (7.85 log CFU/g)
selepas pengeraman sehingga 4 jam. AC-2C MTS larut atau dibebaskan dengan lebih
cepat daripada bahan pengkapsulan dalam kolon di SCJ berbanding NTS, HMT MTS
dan maltodekstrin. Pelepasan masa terpanjang L. plantarum SU-LS36 yang terkandung dalam AC-2C MTS ialah 3 jam
dalam keadaan SIJ, 2 jam dalam SGJ, dan terpantas (1 jam) dalam SCJ. L. plantarum SU-LS36 terkapsul telah
dilepaskan melalui proses pelarutan (SGJ dan SCJ) dan oleh aktiviti pancreatin
(SIJ). Secara kesimpulannya, AC-2C MTS boleh mengekalkan kebolehhidupan sel L. plantarum SU-LS36 ke kolon pada 6.04
log CFU/g dan memenuhi keperluan minimum nilai bio probiotik (MBV) yang ditetapkan
oleh FDA AS (6-7 log CFU/g).
Kata
kunci: Kanji ubi keladi; kemandirian; Lactobacillus plantarum SU-LS36;
pengkapsulan; simulasi pencernaan in-vitro
REFERENCES
Alfaro-Galarza,
O., López-Villegas, E.O., Rivero-Pereza, N., Tapia-Maruric, D.,
Jiménez-Aparicio, A.R., Palma-Rodrígueza, H.M. & Vargas-Torres, A. 2020.
Protective effects of the use of taro and rice starch as wall material on the
viability of encapsulated Lactobacillus
paracasei subsp. Paracasei. LWT - Food Science and Technology 117: 108686.
Arslan-Tontul,
S. & Erbas, M. 2017. Single and double-layered microencapsulation of
probiotics by spray drying and spray chilling. LWT - Food Science and Technology 81: 160-169.
Ashwar,
B.A., Gani, A., Gani, A., Shah, A. & Masoodi, F.A. 2018. Production of RS4
from rice starch and its utilization as an encapsulating agent for targeted
delivery of probiotics. Food Chemistry 239: 287-294.
Basu,
S., Banerjee, D., Chowdhurya, R. & Bhattacharya, P. 2018. Controlled
release of microencapsulated probiotics in food matrix. Journal of Food Engineering 238: 61-69.
Chavarri,
M., Maranon, I., Ares, R., Ibanes, F.C., Marzo, F. & Villaran, M.C. 2010.
Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules
improves survival in simulated gastrointestinal conditions. International Journal of Food Microbiology 142(1-2):
185-189.
Chen,
H.Y., Li, X.Y., Liu, B.J. & Meng, X.H. 2017. Microencapsulation of Lactobacillus bulgaricus and survival
assays under simulated gastrointestinal conditions. Journal of Functional Foods 29: 248-255.
Cheow,
W.S., Kiew, T.Y. & Hadinoto, K. 2014. Controlled release of Lactobacillus rhamnosus biofilm
probiotics from alginate-locust bean gum microcapsules. Carbohydrate Polymer 103: 587-595.
Cook,
M.T., Tzortzis, G., Charalampopoulos, D. & Khutoryanskiy, V.V. 2012.
Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release 162(1):
56-67.
Cook, M.T., Tzortzis, G., Charalampopoulos, D. &
Khutoryanskiy, V.V. 2011. Production and evaluation of dry alginate-chitosan
microcapsules as an enteric delivery vehicle for probiotic bacteria. Biomacromolecules 12(7): 2834-2840.
Deka,
D. & Sit, N. 2016. Dual modification of taro starch by microwave and other
heat moisture treatments. International Journal
of Biology Macromolecul 92: 416-422.
Dianawati,
D., Mishra, V. & Shah, N.P. 2013. Stability of microencapsulated Lactobacillus acidophilus and Lactococcus lactis ssp. cremoris during storage at room temperature at low aw. Food Research International 50(1):
259-265.
Dias,
D.R., Botrel, D.A., Fernandes, R.V.D.B. & Borges, S.V. 2017. Encapsulation
as a tool for bioprocessing of functional foods. Current Opinion in Food Science 13: 31-37.
Doherty,
S.B., Auty, M.A., Stanton, C., Ross, R.P., Fitzgerald, G.F. & Brodkorb, A.
2012. Survival of entrapped Lactobacillus
rhamnosus GG in whey protein micro-beads during simulated ex vivo gastrointestinal transit. International Dairy Journal 22(1): 31-43.
Dos
Santos, D.X., Casazza, A.A., Aliakbariana, B., Bedani, R., Saad, S.M.I. &
Perego, P. 2019. Improved probiotic survival to in vitro gastrointestinal stress in a mousse containing Lactobacillus acidophilus La-5 microencapsulated
with inulin by spray drying. LWT - Food
Science and Technology 99: 404-410.
Dudkiewicz,
A., Masmejean, L., Arnaud, C., Onarinde, A.B., Sundara, R., Anvarian, A.H.P.T.
& Tucker, N. 2020. Approaches for improvement in digestive survival of
probiotics, a comparative study. Polish
Journal Food and Nutrition Science 70(3): 265-273.
Etchepare,
M.A., Raddatz, G.C., Cichoski, A.J., Flores, E.M.M., Barin, J.S., Zepka, L.Q.,
Jacob-Lopes, E., Grosso, C.R.F. & de Menezes, C.R. 2016. Effect of
resistant starch (Hi-maize) on the survival of Lactobacillus acidophilus microencapsulated with sodium alginate. Journal of Functional Foods 21: 321-329.
Hernández-Carranza,
P., López-Malo, A. & Jiménez-Munguía, M.T. 2014. Microencapsulation quality
and efficiency of Lactobacillus casei by spray drying using maltodextrin and vegetable extracts. Journal of Food Research 3(1): 61-69.
Homayouni,
A., Azizi, A., Javadi, M., Mahdipour, S. & Ejtahed, H. 2012. Factors
influencing probiotic survival. International
Journal of Dairy Science 7(1): 1-10.
Li,
R., Zhang, Y., Brent Polk, D., Tomasula, P.M., Yan, F. & Liu, L.S. 2016.
Preserving viability of Lactobacillus
rhamnosus GG in vitro and in vivo by a new encapsulation
system. Journal of Controlled Release 230: 79-87.
Liu,
Y., Sun, Y., Sun, L. & Wang, Y. 2016. In vitro and in vivo study of sodium polyacrylate grafted alginate as microcapsule matrix for live
probiotic delivery. Journal of Functional
Foods 24: 429-437.
Rajam,
R. & Anandharamakrishnan, C. 2015. Microencapsulation of Lactobacillus plantarum (MTCC 5422) with
fructooligosaccharide as wall material by spray drying. LWT - Food Science and Technology 60(2): 773-780.
Rokka,
S. & Rantamaki, P. 2010. Protecting probiotic bacteria by
microencapsulation: Challenges for industrial applications. Europe Food Resources and Technology 231(1):
1-12.
Rosolen,
M.D., Bordini, F.W., de Oliveira, P.D., Conceição, F.R., Pohndorf, R.S.,
Fiorentini, Â.M., da Silva, W.P. & Pieniz, S. 2019. Symbiotic
microencapsulation of Lactococcus lactis subsp. lactis R7 using whey and inulin by spray drying. LWT - Food Science and Technology 115:
108411.
Setiarto,
R.H.B., Jenie, B.S.L., Faridah, D.N., Saskiawan, I. & Sulistiani. 2018.
Effect of lactic acid bacteria fermentation and autoclaving-cooling for
resistant starch and prebiotic properties of modified taro flour. International Food Research Journal 25(4): 1691-1697.
Setiarto,
R.H.B., Kusumaningrum, H.D., Jenie, B.S.L., Khusniati, T. & Sulistiani.
2020. Modified taro starch as alternative encapsulant for microencapsulation of Lactobacillus plantarum SU-LS 36. Czech Journal of Food Sciences 38(5):
293-300.
Shah,
A., Gani, A., Ahmad, M., Ashwar, B.A. & Masoodi, F.A. 2016. β-Glucan
as an encapsulating agent: Effect on probiotic survival in simulated
gastrointestinal tract. International
Journal of Biological Macromolecules 82: 217-222.
Shori,
A.B. 2017. Microencapsulation improved probiotic's survival during gastric
transit. HAYATI Journal of Biosciences 24(1): 1-5.
Sohail,
A., Turner, M.S., Prabawati, E.K., Coombes, A.G.A. & Bhandari, B. 2012.
Evaluation of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM
encapsulated using a novel impinging aerosol method in fruit food products. International Journal of Food Microbiology 157(2): 162-166.
Sulistiani.
2018. Selection of potential probiotic lactic acid bacteria isolated from palm
sap (Borassus flabellifer Linn.) origin Kupang, East Nusa
Tenggara. AIP Conference Proceedings. AIP Publishing. p. 020059.
Tao,
T., Ding, Z., Hou, D., Prakash, S., Zhao, Y., Fan, Z., Zhang, D., Wang, Z., Liu,
M. & Han, J. 2019. Influence of polysaccharide as co-encapsulant on powder
characteristics, survival, and viability of microencapsulated Lactobacillus paracasei Lpc-37 by spray
drying. Journal of Food Engineering 252: 10-17.
Würth,
R., Hörmannsperger, G., Wilke, J., Foerst, P., Haller, D. & Kulozik, U.
2015. Protective effect of milk protein-based microencapsulation on bacterial
survival in simulated gastric juice versus the murine gastrointestinal system. Journal of Functional Foods 15: 116-125.
Yao,
M., Xie, J., Du, H., McClements, D.J., Xiao, H. & Li, L. 2020. Progress in
microencapsulation of probiotics: A review. Comprehensive
Reviews in Food Science and Food Safety 19(2): 1-18.
Ying,
D.Y., Schwanderc, S., Weerakkody, R., Sanguansri, L., Gantenbein-Demarchi, C.
& Augustin, M.A. 2013. Microencapsulated Lactobacillus rhamnosus GG in whey protein and resistant starch
matrices: Probiotic survival in fruit juice. Journal of Functional Foods 5(1): 98-105.
*Corresponding author; email: haryobimo88@gmail.com
|