Sains Malaysiana 51(7)(2022): 2073-2085

http://doi.org/10.17576/jsm-2022-5107-11

 

Survivability and Release Process of Lactobacillus plantarum SU-LS36 Encapsulated with Native and Modified Taro Starch Under Simulated Digestive Conditions

(Kemandirian dan Proses Pelepasan Pengkapsulan Lactobacillus plantarum SU-LS36 dengan Kanji Taro Asli dan Terubah Suai dalam Keadaan Simulasi Pencernaan)

 

R. HARYO BIMO SETIARTO1,2,*, HARSI DEWANTARI KUSUMANINGRUM1, BETTY SRI LAKSMI JENIE1, TATIK KHUSNIATI2, MASRUKHIN3 & SULISTIANI2

 

1Department of Food Science and Technology, Faculty of Agricultural Technology and Engineering, IPB University, Dramaga Bogor, 16680 West Java, Indonesia

2Research Center for Applied Biology, National Research, and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor Km 46, Cibinong Science Center, Cibinong, Bogor, 16911 West Java, Indonesia

3Research Center for Biosystematics and Evolution, National Research, and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor Km 46, Cibinong Science Center, Cibinong, Bogor, 16911 West Java, Indonesia

 

Received: 10 July 2021/Accepted: 9 December 2021

 

ABSTRACT

This research aimed to evaluate the viability, survivability, and release process of the encapsulated Lactobacillus plantarum SU-LS36 in the simulated gastric juice (SGJ), simulated intestinal juice (SIJ), and simulated colon juice (SCJ). We tested four types of encapsulations: native taro starch (NTS), modified taro starch (MTS) by heat moisture treatment (HMT), autoclaving-cooling-2 cycles (AC-2C), and maltodextrin (commercial encapsulant). We found that L. plantarum SU-LS36 with AC-2C-modified taro starch (MTS) showed the highest viability in SGJ (6.95 log CFU/g), SIJ (7.09 log CFU/g), and SCJ (7.85 log CFU/g) after incubation up to 4 h. AC-2C MTS dissolved or released more rapidly from its encapsulant material in the colon in SCJ than in NTS, HMT MTS, and maltodextrin. The longest time release of L. plantarum SU-LS36 encapsulated in AC-2C MTS was 3 h in SIJ conditions, 2 h in SGJ, and the fastest (1 h) in SCJ. The encapsulated L. plantarum SU-LS36 was released through a dissolution process (SGJ and SCJ) and by pancreatin activity (SIJ). Conclusively, AC-2C MTS could maintain the viability of L. plantarum SU-LS36 cells to the colon at 6.04 log CFU/g and fulfilled the minimum requirement of biovalue (MBV) probiotics set forth by the US FDA (6-7 log CFU/g).

 

Keywords: Encapsulation; Lactobacillus plantarum SU-LS36; simulated digestion in-vitro; survivability; taro starch 

 

ABSTRAK

Penyelidikan ini bertujuan untuk menilai kebolehhidupan, kemandirian dan proses pembebasan pengkapsulan Lactobacillus plantarum SU-LS36 dalam jus gaster simulasi (SGJ), jus usus simulasi (SIJ) dan jus kolon simulasi (SCJ). Kami menguji empat jenis pengkapsulan: kanji ubi keladi asli (NTS), kanji ubi keladi terubah suai (MTS) dengan rawatan kelembapan haba (HMT), kitaran penyejukan-2 autoklaf (AC-2C) dan maltodekstrin (pengkapsulan komersial). Kami mendapati bahawa L. plantarum SU-LS36 dengan kanji ubi keladi (MTS) diubah suai AC-2C telah menunjukkan kebolehhidupan yang tertinggi dalam SGJ (6.95 log CFU/g), SIJ (7.09 log CFU/g) dan SCJ (7.85 log CFU/g) selepas pengeraman sehingga 4 jam. AC-2C MTS larut atau dibebaskan dengan lebih cepat daripada bahan pengkapsulan dalam kolon di SCJ berbanding NTS, HMT MTS dan maltodekstrin. Pelepasan masa terpanjang L. plantarum SU-LS36 yang terkandung dalam AC-2C MTS ialah 3 jam dalam keadaan SIJ, 2 jam dalam SGJ, dan terpantas (1 jam) dalam SCJ. L. plantarum SU-LS36 terkapsul telah dilepaskan melalui proses pelarutan (SGJ dan SCJ) dan oleh aktiviti pancreatin (SIJ). Secara kesimpulannya, AC-2C MTS boleh mengekalkan kebolehhidupan sel L. plantarum SU-LS36 ke kolon pada 6.04 log CFU/g dan memenuhi keperluan minimum nilai bio probiotik (MBV) yang ditetapkan oleh FDA AS (6-7 log CFU/g).

 

Kata kunci: Kanji ubi keladi; kemandirian; Lactobacillus plantarum SU-LS36; pengkapsulan; simulasi pencernaan in-vitro

 

REFERENCES

Alfaro-Galarza, O., López-Villegas, E.O., Rivero-Pereza, N., Tapia-Maruric, D., Jiménez-Aparicio, A.R., Palma-Rodrígueza, H.M. & Vargas-Torres, A. 2020. Protective effects of the use of taro and rice starch as wall material on the viability of encapsulated Lactobacillus paracasei subsp. Paracasei. LWT - Food Science and Technology 117: 108686.

Arslan-Tontul, S. & Erbas, M. 2017. Single and double-layered microencapsulation of probiotics by spray drying and spray chilling. LWT - Food Science and Technology 81: 160-169.

Ashwar, B.A., Gani, A., Gani, A., Shah, A. & Masoodi, F.A. 2018. Production of RS4 from rice starch and its utilization as an encapsulating agent for targeted delivery of probiotics. Food Chemistry 239: 287-294.

Basu, S., Banerjee, D., Chowdhurya, R. & Bhattacharya, P. 2018. Controlled release of microencapsulated probiotics in food matrix. Journal of Food Engineering 238: 61-69.

Chavarri, M., Maranon, I., Ares, R., Ibanes, F.C., Marzo, F. & Villaran, M.C. 2010. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastrointestinal conditions. International Journal of Food Microbiology 142(1-2): 185-189.

Chen, H.Y., Li, X.Y., Liu, B.J. & Meng, X.H. 2017. Microencapsulation of Lactobacillus bulgaricus and survival assays under simulated gastrointestinal conditions. Journal of Functional Foods 29: 248-255.

Cheow, W.S., Kiew, T.Y. & Hadinoto, K. 2014. Controlled release of Lactobacillus rhamnosus biofilm probiotics from alginate-locust bean gum microcapsules. Carbohydrate Polymer 103: 587-595.

Cook, M.T., Tzortzis, G., Charalampopoulos, D. & Khutoryanskiy, V.V. 2012. Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release 162(1): 56-67.

Cook, M.T., Tzortzis, G., Charalampopoulos, D. & Khutoryanskiy, V.V. 2011. Production and evaluation of dry alginate-chitosan microcapsules as an enteric delivery vehicle for probiotic bacteria. Biomacromolecules 12(7): 2834-2840.

Deka, D. & Sit, N. 2016. Dual modification of taro starch by microwave and other heat moisture treatments. International Journal of Biology Macromolecul 92: 416-422.

Dianawati, D., Mishra, V. & Shah, N.P. 2013. Stability of microencapsulated Lactobacillus acidophilus and Lactococcus lactis ssp. cremoris during storage at room temperature at low aw. Food Research International 50(1): 259-265.

Dias, D.R., Botrel, D.A., Fernandes, R.V.D.B. & Borges, S.V. 2017. Encapsulation as a tool for bioprocessing of functional foods. Current Opinion in Food Science 13: 31-37.

Doherty, S.B., Auty, M.A., Stanton, C., Ross, R.P., Fitzgerald, G.F. & Brodkorb, A. 2012. Survival of entrapped Lactobacillus rhamnosus GG in whey protein micro-beads during simulated ex vivo gastrointestinal transit. International Dairy Journal 22(1): 31-43.

Dos Santos, D.X., Casazza, A.A., Aliakbariana, B., Bedani, R., Saad, S.M.I. & Perego, P. 2019. Improved probiotic survival to in vitro gastrointestinal stress in a mousse containing Lactobacillus acidophilus La-5 microencapsulated with inulin by spray drying. LWT - Food Science and Technology 99: 404-410.

Dudkiewicz, A., Masmejean, L., Arnaud, C., Onarinde, A.B., Sundara, R., Anvarian, A.H.P.T. & Tucker, N. 2020. Approaches for improvement in digestive survival of probiotics, a comparative study. Polish Journal Food and Nutrition Science 70(3): 265-273.

Etchepare, M.A., Raddatz, G.C., Cichoski, A.J., Flores, E.M.M., Barin, J.S., Zepka, L.Q., Jacob-Lopes, E., Grosso, C.R.F. & de Menezes, C.R. 2016. Effect of resistant starch (Hi-maize) on the survival of Lactobacillus acidophilus microencapsulated with sodium alginate. Journal of Functional Foods 21: 321-329.

Hernández-Carranza, P., López-Malo, A. & Jiménez-Munguía, M.T. 2014. Microencapsulation quality and efficiency of Lactobacillus casei by spray drying using maltodextrin and vegetable extracts. Journal of Food Research 3(1): 61-69.

Homayouni, A., Azizi, A., Javadi, M., Mahdipour, S. & Ejtahed, H. 2012. Factors influencing probiotic survival. International Journal of Dairy Science 7(1): 1-10.

Li, R., Zhang, Y., Brent Polk, D., Tomasula, P.M., Yan, F. & Liu, L.S. 2016. Preserving viability of Lactobacillus rhamnosus GG in vitro and in vivo by a new encapsulation system. Journal of Controlled Release 230: 79-87.

Liu, Y., Sun, Y., Sun, L. & Wang, Y. 2016. In vitro and in vivo study of sodium polyacrylate grafted alginate as microcapsule matrix for live probiotic delivery. Journal of Functional Foods 24: 429-437.

Rajam, R. & Anandharamakrishnan, C. 2015. Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying. LWT - Food Science and Technology 60(2): 773-780.

Rokka, S. & Rantamaki, P. 2010. Protecting probiotic bacteria by microencapsulation: Challenges for industrial applications. Europe Food Resources and Technology 231(1): 1-12.

Rosolen, M.D., Bordini, F.W., de Oliveira, P.D., Conceição, F.R., Pohndorf, R.S., Fiorentini, Â.M., da Silva, W.P. & Pieniz, S. 2019. Symbiotic microencapsulation of Lactococcus lactis subsp. lactis R7 using whey and inulin by spray drying. LWT - Food Science and Technology 115: 108411.

Setiarto, R.H.B., Jenie, B.S.L., Faridah, D.N., Saskiawan, I. & Sulistiani. 2018. Effect of lactic acid bacteria fermentation and autoclaving-cooling for resistant starch and prebiotic properties of modified taro flour. International Food Research Journal 25(4): 1691-1697.

Setiarto, R.H.B., Kusumaningrum, H.D., Jenie, B.S.L., Khusniati, T. & Sulistiani. 2020. Modified taro starch as alternative encapsulant for microencapsulation of Lactobacillus plantarum SU-LS 36. Czech Journal of Food Sciences 38(5): 293-300.

Shah, A., Gani, A., Ahmad, M., Ashwar, B.A. & Masoodi, F.A. 2016. β-Glucan as an encapsulating agent: Effect on probiotic survival in simulated gastrointestinal tract. International Journal of Biological Macromolecules 82: 217-222.

Shori, A.B. 2017. Microencapsulation improved probiotic's survival during gastric transit. HAYATI Journal of Biosciences 24(1): 1-5.

Sohail, A., Turner, M.S., Prabawati, E.K., Coombes, A.G.A. & Bhandari, B. 2012. Evaluation of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM encapsulated using a novel impinging aerosol method in fruit food products. International Journal of Food Microbiology 157(2): 162-166.

Sulistiani. 2018. Selection of potential probiotic lactic acid bacteria isolated from palm sap (Borassus flabellifer Linn.) origin Kupang, East Nusa Tenggara. AIP Conference Proceedings. AIP Publishing. p. 020059.

Tao, T., Ding, Z., Hou, D., Prakash, S., Zhao, Y., Fan, Z., Zhang, D., Wang, Z., Liu, M. & Han, J. 2019. Influence of polysaccharide as co-encapsulant on powder characteristics, survival, and viability of microencapsulated Lactobacillus paracasei Lpc-37 by spray drying. Journal of Food Engineering 252: 10-17.

Würth, R., Hörmannsperger, G., Wilke, J., Foerst, P., Haller, D. & Kulozik, U. 2015. Protective effect of milk protein-based microencapsulation on bacterial survival in simulated gastric juice versus the murine gastrointestinal system. Journal of Functional Foods 15: 116-125.

Yao, M., Xie, J., Du, H., McClements, D.J., Xiao, H. & Li, L. 2020. Progress in microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety 19(2): 1-18.

Ying, D.Y., Schwanderc, S., Weerakkody, R., Sanguansri, L., Gantenbein-Demarchi, C. & Augustin, M.A. 2013. Microencapsulated Lactobacillus rhamnosus GG in whey protein and resistant starch matrices: Probiotic survival in fruit juice. Journal of Functional Foods 5(1): 98-105.

 

*Corresponding author; email: haryobimo88@gmail.com

 

 

 

previous