Sains Malaysiana 51(8)(2022): 2507-2529

http://doi.org/10.17576/jsm-2022-5108-13

 

Synthesis of ISO Grade 46 and 68 Biolubricant from Palm Kernel Fatty Acids

(Sintesis Biopelincir ISO Gred 46 dan 68 daripada Asid Lemak Isirong Sawit)

 

MURAD BAHADI1,2, JUMAT SALIMON1 & DARFIZZI DERAWI1,*

 

1Laboratory for Biolubricant, Biofuels and Bioenergy Research, Department of Chemical Sciences, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Faculty of Education, Hadhramout University, Hadhramout, Yemen

 

Received: 5 September 2021/Accepted: 3 February 2022

 

ABSTRACT

Bio-based lubricant is crucial to be developed considering the toxicity risk, climate change, energy security, and green-environmental approach. Palm kernel fatty acids based biolubricants were synthesized by the homogeneous acid-catalyzed esterification reaction between palm kernel fatty acids with selected polyhydric alcohols; trimethylolpropane (TMP), di-trimethylolpropane (Di-TMP), and pentaerythritol (PE). The reaction optimization is done using a D-optimal design based on four parameters; the ratio of reactants, reaction time, reaction temperature, and catalyst loading. The optimum yield range between 80 and 87%, with more than 93% the selectivity of biolubricant products. The chemical structures of synthesized Palm kernel fatty acids-based biolubricants were characterized and confirmed using FTIR, NMR (1H and 13C) spectroscopies, and GC-FID chromatography. The FTIR spectra of palm kernel fatty acids-based biolubricants products clearly showed the peaks of C=O and C–O of the ester group at 1741-1740 cm-1 and 1234-1152 cm-1, respectively. Furthermore, 1H NMR spectra confirmed the ester group's proton chemical shift (-CH2-O-) at 3.96-4.11 ppm. The 13C NMR spectra confirmed the carbon chemical shifts of ester carbonyl (C=O) signals at 173.5-173.2 ppm. The results for lubrication properties have shown that the palm kernel fatty acids based biolubricants have low-temperature properties with pour points value in the range of -5 to -10 °C, a high flash point of 320-360 °C, a high viscosity index (VI) of 140.86-154.8, the kinematic viscosity of 41.76-87.06 cSt (40 °C), 8.73-14.77 cSt (100 °C), and thermal stability over 210 °C. All synthetic lubricants are categorized as ISO 46 (TMP triester) and ISO 68 (Di-TMP tetraester and PE tetraester).

 

Keywords: Biolubricant; fatty acids; palm kernel; polyhydric alcohols; polyol esters

 

ABSTRAK

Pelincir berasaskan bio adalah penting untuk dibangunkan dengan mengambil kira risiko ketoksikan, perubahan iklim, keselamatan tenaga dan pendekatan persekitaran hijau. Pelincir berasaskan asid lemak isirong sawit telah disintesis oleh tindak balas pengesteran bermangkin asid homogen antara asid lemak isirong sawit dengan alkohol polihidrik terpilih; trimethylolpropane (TMP), di-trimethylolpropane (Di-TMP) dan pentaerythritol (PE). Pengoptimuman tindak balas dilakukan menggunakan reka bentuk D-optimum berdasarkan empat parameter; nisbah bahan tindak balas, masa tindak balas, suhu tindak balas dan beban mangkin. Julat hasil optimum antara 80 dan 87%, dengan lebih daripada 93% selektiviti produk biopelincir. Struktur kimia biopelincir berasaskan asid lemak isirong sawit yang disintesis telah diciri dan disahkan menggunakan spektroskopi FTIR, NMR (1H dan 13C) dan kromatografi GC-FID. Spektrum FTIR bagi produk biopelincir berasaskan asid lemak isirong sawit jelas menunjukkan puncak C=O dan C–O kumpulan ester masing-masing pada 1741-1740 cm-1 dan 1234-1152 cm-1. Tambahan pula, spektrum 1H NMR mengesahkan anjakan kimia proton kumpulan ester (-CH2-O-) pada 3.96-4.11 ppm. Spektrum 13C NMR mengesahkan anjakan kimia karbon bagi isyarat karbonil ester (C=O) pada 173.5-173.2 ppm. Keputusan untuk sifat pelinciran telah menunjukkan bahawa biopelincir berasaskan asid lemak isirong sawit mempunyai sifat suhu rendah dengan nilai titik tuang dalam julat -5 hingga -10 °C, takat kilat tinggi 320-360 °C, kelikatan yang tinggi. Indeks (VI) 140.86-154.8, kelikatan kinematik 41.76-87.06 cSt (40 °C), 8.73-14.77 cSt (100 °C) dan kestabilan terma melebihi 210 °C. Semua pelincir sintetik dikategorikan sebagai ISO 46 (TMP triester) dan ISO 68 (Di-TMP tetraester dan PE tetraester).

 

Kata kunci: Alkohol polihidrik; asid lemak; biopelincir; ester poliol; isirung kelapa sawit

 

REFERENCES

Abdullah, B.M., Zubairi, S.I., Huri, H.Z., Hairunisa, N., Yousif, E. & Basu, R.C. 2016. Polyesters based on linoleic acid for biolubricant basestocks: Low-temperature, tribological and rheological properties. PLoS ONE 11(3): e0151603.

Agrawal, A.J., Karadbhajne, V.Y., Agrawal, P.S., Arekar, P.S. & Chakole, N.P. 2017. Synthesis of biolubricants from non edible oils. International Research Journal of Engineering and Technology 4(7): 1753-1757.

Ahmed, W.A., Yarmo, A., Salih, N., Derawi, M.D. & Yusop, M.R. 2015. Synthesis and lubricity properties analysis of branched dicarboxylate esters based lubricant. Malaysian Journal of Analytical Sciences 19(1): 106-117.

Aigbodion, A.I. & Bakare, I.O. 2005. Rubber seed oil quality assessment and authentication. Journal of the American Oil Chemists’ Society 82(7): 465-469.

Alam, A.S.A.F., Er, A.C. & Begum, H. 2015. Malaysian oil palm industry: Prospect and problem. Journal of Food, Agriculture and Environment 13(2): 143-148.

Algoufi, Y.T., Kabir, G. & Hameed, B.H. 2017. Synthesis of glycerol carbonate from biodiesel by-product glycerol over calcined dolomite. Journal of the Taiwan Institute of Chemical Engineers 70: 179-187.

Awang, R., Ghazuli, M.R. & Basri, M. 2007. Immobilization of lipase from Candida rugosa on palm-based polyurethane foam as a support material. American Journal of Biochemistry and Biotechnology 3(3): 163-166.

Aziza, N.A., Yunus, R., Rashida, U. & Syama, A. 2014. Application of response surface methodology (RSM) for optimizingthe palm-based pentaerythritol ester synthesis. Industrial Crops and Products Journal 62: 305-312.

Ba-Abbad, M.M., Kadhum, A.A.H., Mohamad, A.B., Takriff, M.S. & Sopian, K. 2013. Optimization of process parameters using D-optimal design for synthesis of ZnO nanoparticles via sol-gel technique. Journal of Industrial and Engineering Chemistry 19(1): 99-105.

Bahadi, M., Salimon, J. & Derawi, D. 2021. Synthesis of di-trimethylolpropane tetraester-based biolubricant from Elaeis guineensis kernel oil via homogeneous acid-catalyzed transesterification. Renewable Energy 171: 981-993.

Bahadi, M., Yusoff, M.F., Salimon, J. & Derawi, D. 2020. Optimization of response surface methodology by d-optimal design for alkaline hydrolysis of crude palm kernel oil. Sains Malaysiana 49(1): 29-41.

Bahadi, M.A., Japir, A.W., Salih, N. & Salimon, J. 2016. Free fatty acids separation from Malaysian high free fatty acid crude palm oil using molecular distillation. Malaysian Journal of Analytical Sciences 20(5): 1042-1015.

Bart, J.C.J., Gucciardi, E. & Cavallaro, S. 2012. Biolubricants: Science and Technology. Oxford: Woodhead Publishing Limited.

Bhan, C., Verma, L. & Singh, J. 2020. Alternative fuels for sustainable development. In Environmental Concerns and Sustainable Development, edited by Shukla, V. & Kumar, N. Singapore: Springer. pp. 317-331.

Bölük, G. & Mert, M. 2014. Fossil & renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries. Energy 74(C): 439-446.

Cavalcanti, E.D.C., Aguieiras, É.C.G., da Silva, P.R., Duarte, J.G., Cipolatti, E.P., Fernandez-Lafuente, R., da Silva, J.A.C. & Freire, D.M.G. 2018. Improved production of biolubricants from soybean oil and different polyols via esterification reaction catalyzed by immobilized lipase from Candida rugosa. Fuel 215: 705-713.

Derawi, D. & Salimon, J. 2013. Palm olein based biolubricant basestocks: Synthesis, characterisation, tribological and rheological analysis. Malaysian Journal of Analytical Sciences 17(1): 153-163.

Dujjanutat, P. & Kaewkannetra, P. 2020. Production of bio-hydrogenated kerosene by catalytic hydrocracking from refined bleached deodorised palm/palm kernel oils. Renewable Energy 147: 464-472.

Fadzel, F.M., Salimon, J. & Derawi, D. 2019. Biolubricant production from palm stearin fatty acids and pentaerythritol. Malaysian Journal of Chemistry 21(2): 50-63.

Goon, D.E., Abdul Kadir, S.H.S., Latip, N.A., Rahim, S.A. & Mazlan, M. 2019. Palm oil in lipid-based formulations and drug delivery systems. Biomolecules 9(2): 1-20.

Gupta, V.G., Tuohy, M., Kubicek, C.P., Saddler, J. & Xu, F. 2013. Bioenergy Research: Advances and Applications. Amsterdam: Newnes. pp. 1-500.

Japir, Salimon, J., Derawi, D., Bahadi, M., Al-Shuja’A, S. & Yusop, M.R. 2017. Physicochemical characteristics of high free fatty acid crude palm oil. OCL - Oilseeds and fats, Crops and Lipids 24(5): D506.

Japir, A.A.W., Salimon, J., Derawi, D., Bahadi, M. & Yusop, M.R. 2016. Purification of high free fatty acid crude palm oil using molecular distillation. Asian Journal of Chemistry 28(11): 2549-2554.

Karmakar, A., Karmakar, S. & Mukherjee, S. 2010. Properties of various plants and animals feedstocks for biodiesel production. Bioresource Technology 101(19): 7201-7210.

Keera, S.T., El Sabagh, S.M. & Taman, A.R. 2018. Castor oil biodiesel production and optimization. Egyptian Journal of Petroleum 27(4): 979-984.

Kushairi, A., Ong-Abdullah, M., Nambiappan, B., Hishamuddin, E., Bidin, M.N.I.Z., Ghazali, R., Subramaniam, V., Sundram, S. & Parveez, G.K.A. 2020. Oil palm economic performance in Malaysia and R&D progress in 2019. Journal of Oil Palm Research 31(2): 159-190.

Mahmud, H.A., Salih, N. & Salimon, J. 2015. Oleic acid based polyesters of trimethylolpropane and pentaerythritol for biolubricant application. Malaysian Journal of Analytical Sciences 19(1): 97-105.

Mang, T. & Dresel, W. 2017. Lubricants and Lubrication. Weinheim, Germany: Wiley-VCH. pp. 1-890.

Mintova, S. & Ng, E. 2015. Zeolite nanoparticles as effective antioxidant additive for the preservation of palm oil-based lubricant. Journal of the Taiwan Institute of Chemical Engineers 58: 565-571.

Mortier, R.M., Fox, M.F. & Orszulik, S.T. 2010. Chemistry and Technology of Lubricants. Dordrecht: Springer Netherlands. pp. 1-457.

Nor, N.M., Derawi, D. & Salimon, J. 2019. Esterification and evaluation of palm oil as biolubricant base stock. Malaysian Journal of Chemistry 21(2): 28-35.

Nowicki, J., Stańczyk, D., Drabik, J., Mosio-Mosiewski, J., Woszczyński, P. & Warzała, M. 2016. Synthesis of fatty acid esters of selected higher polyols over homogeneous metallic catalysts. Journal of the American Oil Chemists’ Society 93(7): 973-981.

Onoja, E., Chandren, S., Abdul Razak, F.I., Mahat, N.A. & Wahab, R.A. 2019. Oil palm (Elaeis guineensis) biomass in Malaysia: The present and future prospects. Waste and Biomass Valorization 10(8): 2099-2117.

Owuna, F.J., Dabai, M.U., Sokoto, M.A., Dangoggo, S.M., Bagudo, B.U., Birnin-Yauri, U.A., Hassan, L.G., Sada, I., Abubakar, A.L. & Jibrin, M.S. 2019. Chemical modification of vegetable oils for the production of biolubricants using trimethylolpropane: A review. Egyptian Journal of Petroleum 29(1): 75-82.

Papadaki, A., Fernandes, K.V., Chatzifragkou, A., Aguieiras, E.C.G., da Silva, J.A.C., Fernandez-Lafuente, R., Papanikolaou, S., Koutinas, A. & Freire, D.M.G. 2018. Bioprocess development for biolubricant production using microbial oil derived via fermentation from confectionery industry wastes. Bioresource Technology 267: 311-318.

Pavia, D.L., Lampman, G.M., Kriz, G.S. & Vyvyan, J.R. 2015. Introduction to Spectroscopy. Australia: Cengage Learning, Inc. pp. 1-786.

Prasad, S., Kumar, S., Sheetal, K.R. & Venkatramanan, V. 2020. Global climate change and biofuels policy: Indian perspectives. In Global Climate Change and Environmental Policy, edited by Venkatramanan, V., Shah, S. & Prasad, R. Singapore: Springer Singapore. pp. 207-226.

Radovanović, M., Filipović, S. & Pavlović, D. 2017. Energy security measurement - A sustainable approach. Renewable and Sustainable Energy Reviews 68: 1020-1032.

Resul, M.F.M.G., Tinia, T.I. & Idris, A. 2012. Kinetic study of jatropha biolubricant from transesterification of Jatropha curcas oil with trimethylolpropane: Effects of temperature. Industrial Crops and Products 38(1): 87-92.

Rios, Í.C., Cordeiro, J.P., Arruda, T.B.M.G., Rodrigues, F.E.A., Uchoa, A.F.J., Luna, F.M.T., Cavalcante, C.L. & Ricardo, N.M.P.S. 2019. Chemical modification of castor oil fatty acids (Ricinus communis) for biolubricant applications: An alternative for Brazil’s green market. Industrial Crops and Products 145: 112000.

Rohman, A., Che Man, Y.B., Ismail, A. & Hashim, P. 2010. Application of FTIR spectroscopy for the determination of virgin coconut oil in binary mixtures with olive oil and palm oil. Journal of the American Oil Chemists’ Society 87(6): 601-606.

Rudnick, L.R. 2020. Synthetics, Mineral Oils, and Bio-Based Lubricants Chemistry and Technology. Boca Raton: CRC Press. pp. 1-1194.

Salih, N., Salimon, J. & Yousif, E. 2013a. The effect of chemical structure on pour point, oxidative stability and tribological properties of oleic acid triester derivatives. Malaysian Journal of Analytical Sciences 17(1): 119-128.

Salih, N., Salimon, J., Yousif, E. & Abdullah, B.M. 2013b. Biolubricant basestocks from chemically modified plant oils: Ricinoleic acid based-tetraesters. Chemistry Central Journal 7(1): 1-13.

Salih, N., Salimon, J. & Yousif, E. 2011. The physicochemical and tribological properties of oleic acid based triester biolubricants. Industrial Crops and Products 34(1): 1089-1096.

Salimon, J., Salih, N. & Yousif, E. 2012. Improvement of pour point and oxidative stability of synthetic ester basestocks for biolubricant applications. Arabian Journal of Chemistry 5(2): 193-200.

Salimon, J., Salih, N. & Yousif, E. 2011. Chemically modified biolubricant basestocks from epoxidized oleic acid: Improved low temperature properties and oxidative stability. Journal of Saudi Chemical Society 15(3): 195-201.

Schneider, M.P. 2006. Plant-oil-based lubricants and hydraulic fluids. Journal of the Science of Food and Algriculture 86: 1769-1780.

Tupureina, V. 2009. Compositions of hydraulic fluids based on rapeseed oil and its derivatives. Engineering for Rural Development 28: 171-175.

Wang, E., Ma, X., Tang, S., Yan, R., Wang, Y., Riley, W.W. & Reaney, M.J.T. 2014. Synthesis and oxidative stability of trimethylolpropane fatty acid triester as a biolubricant base oil from waste cooking oil. Biomass and Bioenergy 66: 371-378.

Wu, S.Q., Sun, T.T., Cai, Z.Z., Shen, J., Yang, W.Z., Zhao, Z.M. & Yang, D.P. 2020. Biolubricant base stock with improved low temperature performance: Ester complex production using housefly (Musca domestica L.) larval lipid. Renewable Energy 162: 1940-1951.

Yaseen, M., Abbas, F., Shakoor, M.B., Farooque, A.A. & Rizwan, M. 2020. Biomass for renewable energy production in Pakistan: Current state and prospects. Arabian Journal of Geosciences 13(2): 1-13.

Yunus, R., Fakhru’l-Razi, A., Ooi, T.L., Iyuke, S.E. & Perez, J.M. 2004. Lubrication properties of trimethylolpropane esters based on palm oil and palm kernel oils. European Journal of Lipid Science and Technology 106(1): 52-60.

Yunus, R., Fakhru’l-Razi, A., Ooi, T.L., Omar, R. & Idris, A. 2005. Synthesis of palm oil based trimethylolpropane esters with improved pour points. Industrial & Engineering Chemistry Research 44(22): 8178-8183.

Yunus, R., Lye, O.T., Fakhru’l-Razi, A. & Basri, S. 2002. A simple capillary column GC method for analysis of palm oil-based polyol esters. Journal of the American Oil Chemists’ Society 79(11): 1075-1080.

Zulkifli, N.W.M., Masjuki, H.H., Kalam, M.A., Yunus, R. & Azman, S.S.N. 2014. Lubricity of bio-based lubricant derived from chemically modified jatropha methyl ester. Jurnal Tribologi 1: 18-39.

 

*Corresponding author; email: darfizzi@ukm.edu.my

 

 

previous