Sains Malaysiana 51(8)(2022):
2507-2529
http://doi.org/10.17576/jsm-2022-5108-13
Synthesis of ISO Grade 46 and 68 Biolubricant from Palm Kernel Fatty Acids
(Sintesis Biopelincir ISO Gred 46 dan 68 daripada Asid Lemak Isirong Sawit)
MURAD BAHADI1,2,
JUMAT SALIMON1 & DARFIZZI DERAWI1,*
1Laboratory
for Biolubricant, Biofuels and Bioenergy Research,
Department of Chemical Sciences, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Faculty of
Education, Hadhramout University, Hadhramout,
Yemen
Received: 5
September 2021/Accepted: 3 February 2022
ABSTRACT
Bio-based
lubricant is crucial to be developed considering the toxicity risk, climate
change, energy security, and green-environmental approach. Palm kernel fatty
acids based biolubricants were synthesized by the
homogeneous acid-catalyzed esterification reaction between palm kernel fatty
acids with selected polyhydric alcohols; trimethylolpropane (TMP),
di-trimethylolpropane (Di-TMP), and pentaerythritol (PE). The reaction
optimization is done using a D-optimal design based on four parameters; the
ratio of reactants, reaction time, reaction temperature, and catalyst loading.
The optimum yield range between 80 and 87%, with more than 93% the selectivity
of biolubricant products. The chemical structures of
synthesized Palm kernel fatty acids-based biolubricants were characterized and confirmed using FTIR, NMR (1H and 13C)
spectroscopies, and GC-FID chromatography. The FTIR spectra of palm kernel
fatty acids-based biolubricants products clearly
showed the peaks of C=O and C–O of the ester group at 1741-1740 cm-1 and 1234-1152 cm-1, respectively. Furthermore, 1H NMR
spectra confirmed the ester group's proton chemical shift (-CH2-O-)
at 3.96-4.11 ppm. The 13C NMR spectra confirmed the carbon chemical
shifts of ester carbonyl (C=O) signals at 173.5-173.2 ppm. The results for
lubrication properties have shown that the palm kernel fatty acids based biolubricants have low-temperature properties with pour
points value in the range of -5 to -10 °C, a high flash point of 320-360 °C, a
high viscosity index (VI) of 140.86-154.8, the kinematic viscosity of
41.76-87.06 cSt (40 °C), 8.73-14.77 cSt (100 °C), and thermal stability over 210 °C. All
synthetic lubricants are categorized as ISO 46 (TMP triester)
and ISO 68 (Di-TMP tetraester and PE tetraester).
Keywords: Biolubricant; fatty acids; palm kernel; polyhydric
alcohols; polyol esters
ABSTRAK
Pelincir berasaskan bio adalah penting untuk dibangunkan dengan mengambil kira risiko ketoksikan, perubahan iklim, keselamatan tenaga dan pendekatan persekitaran hijau. Pelincir berasaskan asid lemak isirong sawit telah disintesis oleh tindak balas pengesteran bermangkin asid homogen antara asid lemak isirong sawit dengan alkohol polihidrik terpilih;
trimethylolpropane (TMP), di-trimethylolpropane (Di-TMP) dan pentaerythritol
(PE). Pengoptimuman tindak balas dilakukan menggunakan reka bentuk D-optimum berdasarkan empat parameter; nisbah bahan tindak balas,
masa tindak balas, suhu tindak balas dan beban mangkin. Julat hasil optimum antara 80 dan 87%, dengan lebih daripada 93% selektiviti produk biopelincir. Struktur kimia biopelincir berasaskan asid lemak isirong sawit yang disintesis telah diciri dan disahkan menggunakan spektroskopi FTIR,
NMR (1H dan 13C) dan kromatografi GC-FID. Spektrum
FTIR bagi produk biopelincir berasaskan asid lemak isirong sawit jelas menunjukkan puncak C=O dan C–O kumpulan ester masing-masing pada 1741-1740 cm-1 dan 1234-1152 cm-1. Tambahan pula, spektrum 1H NMR mengesahkan anjakan kimia proton kumpulan ester (-CH2-O-) pada 3.96-4.11 ppm. Spektrum 13C
NMR mengesahkan anjakan kimia karbon bagi isyarat karbonil ester
(C=O) pada 173.5-173.2 ppm. Keputusan untuk sifat pelinciran telah menunjukkan bahawa biopelincir berasaskan asid lemak isirong sawit mempunyai sifat suhu rendah dengan nilai titik tuang dalam julat -5 hingga -10 °C, takat kilat tinggi 320-360 °C, kelikatan yang tinggi. Indeks (VI) 140.86-154.8, kelikatan kinematik 41.76-87.06 cSt (40 °C), 8.73-14.77 cSt (100 °C) dan kestabilan terma melebihi 210 °C. Semua pelincir sintetik dikategorikan sebagai ISO 46 (TMP triester) dan ISO 68 (Di-TMP tetraester dan PE tetraester).
Kata kunci: Alkohol polihidrik; asid lemak; biopelincir; ester poliol; isirung kelapa sawit
REFERENCES
Abdullah, B.M., Zubairi, S.I., Huri, H.Z., Hairunisa, N., Yousif, E. & Basu,
R.C. 2016. Polyesters based on linoleic acid for biolubricant basestocks: Low-temperature, tribological and
rheological properties. PLoS ONE 11(3): e0151603.
Agrawal, A.J., Karadbhajne, V.Y., Agrawal,
P.S., Arekar, P.S. & Chakole,
N.P. 2017. Synthesis of biolubricants from non edible oils. International
Research Journal of Engineering and Technology 4(7): 1753-1757.
Ahmed, W.A., Yarmo, A., Salih, N., Derawi, M.D. & Yusop, M.R.
2015. Synthesis and lubricity properties analysis of branched dicarboxylate
esters based lubricant. Malaysian Journal
of Analytical Sciences 19(1): 106-117.
Aigbodion, A.I. & Bakare, I.O. 2005. Rubber seed oil
quality assessment and authentication. Journal
of the American Oil Chemists’ Society 82(7): 465-469.
Alam, A.S.A.F., Er, A.C. & Begum, H. 2015.
Malaysian oil palm industry: Prospect and problem. Journal of Food, Agriculture and Environment 13(2): 143-148.
Algoufi, Y.T., Kabir, G. & Hameed, B.H. 2017. Synthesis
of glycerol carbonate from biodiesel by-product glycerol over calcined
dolomite. Journal of the Taiwan Institute
of Chemical Engineers 70: 179-187.
Awang, R., Ghazuli, M.R. & Basri, M. 2007. Immobilization of lipase from Candida
rugosa on palm-based polyurethane foam as a support material. American Journal of Biochemistry and
Biotechnology 3(3): 163-166.
Aziza, N.A., Yunus, R., Rashida, U. & Syama, A. 2014. Application of response surface methodology
(RSM) for optimizingthe palm-based pentaerythritol
ester synthesis. Industrial Crops and
Products Journal 62: 305-312.
Ba-Abbad, M.M., Kadhum,
A.A.H., Mohamad, A.B., Takriff, M.S. & Sopian, K. 2013. Optimization of process parameters using
D-optimal design for synthesis of ZnO nanoparticles
via sol-gel technique. Journal of Industrial and Engineering Chemistry 19(1): 99-105.
Bahadi, M., Salimon, J. & Derawi,
D. 2021. Synthesis of di-trimethylolpropane tetraester-based biolubricant from Elaeis guineensis kernel oil via homogeneous
acid-catalyzed transesterification. Renewable Energy 171: 981-993.
Bahadi, M., Yusoff, M.F., Salimon,
J. & Derawi, D. 2020. Optimization of response
surface methodology by d-optimal design for alkaline hydrolysis of crude palm
kernel oil. Sains Malaysiana 49(1): 29-41.
Bahadi, M.A., Japir, A.W., Salih, N. & Salimon, J. 2016. Free fatty acids separation from
Malaysian high free fatty acid crude palm oil using molecular distillation. Malaysian Journal of Analytical Sciences 20(5): 1042-1015.
Bart, J.C.J., Gucciardi, E. & Cavallaro,
S. 2012. Biolubricants: Science and Technology. Oxford: Woodhead Publishing Limited.
Bhan, C., Verma, L. & Singh, J. 2020. Alternative fuels for sustainable
development. In Environmental Concerns and Sustainable Development,
edited by Shukla, V. & Kumar, N. Singapore: Springer. pp. 317-331.
Bölük, G. & Mert, M. 2014. Fossil & renewable
energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from
a panel of EU (European Union) countries. Energy 74(C): 439-446.
Cavalcanti, E.D.C., Aguieiras, É.C.G., da
Silva, P.R., Duarte, J.G., Cipolatti, E.P.,
Fernandez-Lafuente, R., da Silva, J.A.C. &
Freire, D.M.G. 2018. Improved production of biolubricants from soybean oil and different polyols via esterification reaction catalyzed by
immobilized lipase from Candida rugosa. Fuel 215: 705-713.
Derawi, D. & Salimon, J. 2013. Palm olein based biolubricant basestocks:
Synthesis, characterisation, tribological and
rheological analysis. Malaysian Journal
of Analytical Sciences 17(1):
153-163.
Dujjanutat, P. & Kaewkannetra, P.
2020. Production of bio-hydrogenated kerosene by catalytic hydrocracking from
refined bleached deodorised palm/palm kernel oils. Renewable Energy 147: 464-472.
Fadzel, F.M., Salimon, J. & Derawi,
D. 2019. Biolubricant production from palm stearin
fatty acids and pentaerythritol. Malaysian
Journal of Chemistry 21(2):
50-63.
Goon, D.E., Abdul Kadir, S.H.S., Latip, N.A.,
Rahim, S.A. & Mazlan, M. 2019. Palm oil in lipid-based formulations and
drug delivery systems. Biomolecules 9(2): 1-20.
Gupta, V.G., Tuohy, M., Kubicek, C.P.,
Saddler, J. & Xu, F. 2013. Bioenergy
Research: Advances and Applications. Amsterdam: Newnes.
pp. 1-500.
Japir, Salimon, J., Derawi,
D., Bahadi, M., Al-Shuja’A,
S. & Yusop, M.R. 2017. Physicochemical
characteristics of high free fatty acid crude palm oil. OCL - Oilseeds and fats, Crops and Lipids 24(5): D506.
Japir, A.A.W., Salimon, J., Derawi,
D., Bahadi, M. & Yusop,
M.R. 2016. Purification of high free fatty acid crude palm oil using molecular
distillation. Asian Journal of Chemistry 28(11): 2549-2554.
Karmakar, A., Karmakar, S. &
Mukherjee, S. 2010. Properties of various plants and animals feedstocks for
biodiesel production. Bioresource
Technology 101(19):
7201-7210.
Keera, S.T., El Sabagh, S.M. & Taman, A.R.
2018. Castor oil biodiesel production and optimization. Egyptian Journal of Petroleum 27(4): 979-984.
Kushairi, A., Ong-Abdullah, M., Nambiappan,
B., Hishamuddin, E., Bidin,
M.N.I.Z., Ghazali, R., Subramaniam, V., Sundram, S.
& Parveez, G.K.A. 2020. Oil palm economic
performance in Malaysia and R&D progress in 2019. Journal of Oil Palm Research 31(2):
159-190.
Mahmud, H.A., Salih, N. & Salimon, J.
2015. Oleic acid based polyesters of trimethylolpropane and pentaerythritol for biolubricant application. Malaysian Journal of Analytical Sciences 19(1): 97-105.
Mang, T. & Dresel, W. 2017. Lubricants and Lubrication. Weinheim,
Germany: Wiley-VCH. pp. 1-890.
Mintova, S. & Ng, E. 2015. Zeolite nanoparticles as
effective antioxidant additive for the preservation of palm oil-based
lubricant. Journal of the Taiwan
Institute of Chemical Engineers 58:
565-571.
Mortier, R.M., Fox, M.F. & Orszulik, S.T.
2010. Chemistry and Technology of
Lubricants. Dordrecht: Springer Netherlands. pp. 1-457.
Nor, N.M., Derawi, D. & Salimon, J. 2019. Esterification and evaluation of palm oil
as biolubricant base stock. Malaysian Journal of Chemistry 21(2): 28-35.
Nowicki, J., Stańczyk, D., Drabik, J., Mosio-Mosiewski, J., Woszczyński,
P. & Warzała, M. 2016. Synthesis of fatty
acid esters of selected higher polyols over homogeneous metallic catalysts. Journal of the American Oil Chemists’
Society 93(7): 973-981.
Onoja, E., Chandren, S., Abdul Razak,
F.I., Mahat, N.A. & Wahab, R.A. 2019. Oil palm (Elaeis guineensis)
biomass in Malaysia: The present and future prospects. Waste and Biomass Valorization 10(8): 2099-2117.
Owuna, F.J., Dabai, M.U., Sokoto, M.A., Dangoggo, S.M., Bagudo, B.U., Birnin-Yauri, U.A., Hassan, L.G., Sada,
I., Abubakar, A.L. & Jibrin, M.S. 2019. Chemical
modification of vegetable oils for the production of biolubricants using trimethylolpropane: A review. Egyptian
Journal of Petroleum 29(1):
75-82.
Papadaki, A., Fernandes, K.V., Chatzifragkou,
A., Aguieiras, E.C.G., da Silva, J.A.C., Fernandez-Lafuente, R., Papanikolaou, S., Koutinas, A. & Freire, D.M.G. 2018. Bioprocess
development for biolubricant production using
microbial oil derived via fermentation from confectionery industry wastes. Bioresource Technology 267: 311-318.
Pavia, D.L., Lampman, G.M., Kriz, G.S. &
Vyvyan, J.R. 2015. Introduction to
Spectroscopy. Australia: Cengage Learning, Inc. pp. 1-786.
Prasad, S., Kumar, S., Sheetal, K.R. & Venkatramanan,
V. 2020. Global climate change and biofuels policy: Indian perspectives. In Global
Climate Change and Environmental Policy, edited by Venkatramanan,
V., Shah, S. & Prasad, R. Singapore: Springer Singapore. pp. 207-226.
Radovanović, M., Filipović, S.
& Pavlović, D. 2017. Energy security measurement - A sustainable
approach. Renewable and Sustainable
Energy Reviews 68: 1020-1032.
Resul, M.F.M.G., Tinia, T.I. & Idris, A. 2012.
Kinetic study of jatropha biolubricant from
transesterification of Jatropha curcas oil
with trimethylolpropane: Effects of temperature. Industrial Crops and Products 38(1): 87-92.
Rios, Í.C., Cordeiro, J.P., Arruda, T.B.M.G., Rodrigues, F.E.A., Uchoa, A.F.J., Luna, F.M.T., Cavalcante, C.L. &
Ricardo, N.M.P.S. 2019. Chemical modification of castor oil fatty acids (Ricinus communis) for biolubricant applications: An alternative for Brazil’s green market. Industrial Crops and Products 145: 112000.
Rohman, A., Che Man, Y.B., Ismail, A. & Hashim, P. 2010. Application of
FTIR spectroscopy for the determination of virgin coconut oil in binary
mixtures with olive oil and palm oil. Journal
of the American Oil Chemists’ Society 87(6): 601-606.
Rudnick, L.R. 2020. Synthetics,
Mineral Oils, and Bio-Based Lubricants Chemistry and Technology. Boca
Raton: CRC Press. pp. 1-1194.
Salih, N., Salimon, J. & Yousif, E. 2013a.
The effect of chemical structure on pour point, oxidative stability and
tribological properties of oleic acid triester derivatives. Malaysian Journal of
Analytical Sciences 17(1):
119-128.
Salih, N., Salimon, J., Yousif, E. &
Abdullah, B.M. 2013b. Biolubricant basestocks from chemically modified plant oils: Ricinoleic acid based-tetraesters. Chemistry Central Journal 7(1): 1-13.
Salih, N., Salimon, J. & Yousif, E. 2011.
The physicochemical and tribological properties of oleic acid based triester biolubricants. Industrial Crops and Products 34(1): 1089-1096.
Salimon, J., Salih, N. & Yousif, E. 2012. Improvement of
pour point and oxidative stability of synthetic ester basestocks for biolubricant applications. Arabian Journal of Chemistry 5(2):
193-200.
Salimon, J., Salih, N. & Yousif, E. 2011. Chemically
modified biolubricant basestocks from epoxidized oleic acid: Improved low temperature properties and oxidative
stability. Journal of Saudi Chemical
Society 15(3): 195-201.
Schneider, M.P. 2006. Plant-oil-based lubricants and hydraulic fluids. Journal of the Science of Food and Algriculture 86: 1769-1780.
Tupureina, V. 2009. Compositions of hydraulic fluids based on
rapeseed oil and its derivatives. Engineering
for Rural Development 28: 171-175.
Wang, E., Ma, X., Tang, S., Yan, R., Wang, Y., Riley, W.W. & Reaney, M.J.T. 2014. Synthesis and oxidative stability of
trimethylolpropane fatty acid triester as a biolubricant base oil from waste cooking oil. Biomass and Bioenergy 66: 371-378.
Wu, S.Q., Sun, T.T., Cai, Z.Z., Shen, J., Yang, W.Z., Zhao, Z.M. &
Yang, D.P. 2020. Biolubricant base stock with
improved low temperature performance: Ester complex production using housefly (Musca domestica L.) larval lipid. Renewable Energy 162: 1940-1951.
Yaseen, M., Abbas, F., Shakoor, M.B., Farooque,
A.A. & Rizwan, M. 2020. Biomass for renewable energy production in
Pakistan: Current state and prospects. Arabian Journal of Geosciences 13(2): 1-13.
Yunus, R., Fakhru’l-Razi, A., Ooi,
T.L., Iyuke, S.E. & Perez, J.M. 2004. Lubrication
properties of trimethylolpropane esters based on palm oil and palm kernel oils. European Journal of Lipid Science and
Technology 106(1): 52-60.
Yunus, R., Fakhru’l-Razi, A., Ooi,
T.L., Omar, R. & Idris, A. 2005. Synthesis of palm oil based
trimethylolpropane esters with improved pour points. Industrial & Engineering Chemistry Research 44(22): 8178-8183.
Yunus, R., Lye, O.T., Fakhru’l-Razi, A. & Basri, S. 2002. A simple capillary column GC method for
analysis of palm oil-based polyol esters. Journal
of the American Oil Chemists’ Society 79(11): 1075-1080.
Zulkifli, N.W.M., Masjuki, H.H.,
Kalam, M.A., Yunus, R. & Azman, S.S.N. 2014.
Lubricity of bio-based lubricant derived from chemically modified jatropha
methyl ester. Jurnal Tribologi 1: 18-39.
*Corresponding
author; email: darfizzi@ukm.edu.my
|