Sains Malaysiana 51(8)(2022): 2547-2557

http://doi.org/10.17576/jsm-2022-5108-15

 

Fatty Acid Profiling and Physiochemical Characterization of Chlorella sorokiniana Potentially Used for Biofuel Production

(Pemprofilan Asid Lemak dan Pencirian Fisiokimia Chlorella sorokiniana Berpotensi Digunakan untuk Pengeluaran Bahan Api Biologi)

 

MUHAMMAD AMMAR1, MARIA OMER2, SITWAT AMAN2,3, ABDUL HAMEED4, SAFDAR ABBAS1, SHABNAM SHAHEEN5, AIMAN ABBAS6 & SAMINA N SHAKEEL1,3,*

 

1Department of Biochemistry Faculty of Biological Sciences Quaid-i-Azam University Islamabad Pakistan

2Institute of Molecular Biology and Biotechnology University of Lahore Pakistan

3Department of Biological Sciences, Dartmouth College Hanover NH USA

4Genomic Lab, Main Saidpur Road, Rawalpindi, Pakistan

5Department of Higher Education, Government Girls Degree College Serai Naurang (Lakki Marwat), Peshawar, Pakistan

6University of Veterinary and Animal Sciences, Lahore, Pakistan

 

Received: 20 November 2021/Accepted: 28 February 2022

 

Abstract

Rising oil prices and climate change have resulted in more emphasis on research into renewable biofuels. In this study, different water samples were collected from local vicinities for the isolation of local isolates of microalgae to check their potential towards the production of biofuel by the addition of different chemical substrates. Five different concentrations of ascorbic acid and iron (III) chloride (0, 1, 2.5, 5 & 10 µM) are used as substrates. Microscopic analysis evaluated that samples belong to genus Chlorella and further molecular identification showed that the samples are C. sorokiniana. Among all the concentrations of ascorbic acid 2.5 µM is most effective against the C. sorokiniana strain 1 (Safari Wildlife Park, Lahore) and C. sorokiniana strain 2 (Bahria Town, Lahore) while C. sorokiniana Strain 3 (SukhChane Society, Lahore) responded at 2.5 & 5 µM in term of biomass production. FeCl3 (2.5 µM) is effective against C. sorokiniana strain 1 while the growth of C. sorokiniana strain 2 and C. sorokiniana Strain 3 is inhibited. Lipid content analysis showed that only the C. sorokiniana strain 1 shows effective results at 1 & 2.5 µM of ascorbic acid and FeCl3, respectively. Those concentrations which give the significant results of lipid production were preceded for fatty acid profiling. Results indicate that the C. sorokiniana strain 1 can be considered as a source of alpha-linolenic acid; the basic constituent of biofuel production. In this study, it is concluded that C. sorokiniana strain 1 is useful for the production of environment friendly biofuel.

 

Keywords: Ascorbic acid; fatty acids; free fatty acids; gas chromatography mass spectrophotometry

 

Abstrak

Kenaikan harga minyak dan perubahan iklim telah menyebabkan penyelidikan berkaitan biobahan api yang boleh diperbaharui diberi lebih perhatian. Dalam kajian ini, sampel air yang berbeza telah dikumpul daripada kawasan sekitar untuk pengasingan mikroalga dan memeriksa potensinya terhadap pengeluaran bahan api biologi dengan penambahan substrat kimia yang berbeza. Lima kepekatan berbeza asid askorbik dan besi (III) klorida (0, 1, 2.5, 5 & 10 µM) digunakan sebagai substrat. Analisis mikroskopik menilai bahawa sampel tergolong dalam genus Chlorella dan pengecaman molekul selanjutnya mendedahkan bahawa sampel tersebut adalah C. sorokiniana. Antara semua kepekatan asid askorbik 2.5 µM adalah paling berkesan terhadap C. sorokiniana strain 1 (Safari Wildlife Park, Lahore) dan C. sorokiniana strain 2 (Bahria Town, Lahore) manakala C. sorokiniana Strain 3 (SukhChane Society, Lahore) bertindak balas pada 2.5 & 5 µM daripada pengeluaran biojisim. FeCl3 (2.5 µM) berkesan terhadap C. sorokiniana strain 1 manakala pertumbuhan C. sorokiniana strain 2 dan C. sorokiniana Strain 3 dihalang. Analisis kandungan lipid mendedahkan bahawa hanya C. sorokiniana strain 1 menunjukkan hasil yang berkesan masing-masing pada 1 & 2.5 µM asid askorbik dan FeCl3. Kepekatan yang memberikan hasil ketara penghasilan lipid telah didahulukan untuk pemprofilan asid lemak. Keputusan menunjukkan bahawa C. sorokiniana strain 1 boleh dianggap sebagai sumber asid alfa-linolenik; juzuk asas pengeluaran bahan api biologi. Dalam kajian ini, disimpulkan bahawa C. sorokiniana strain 1 berguna untuk pengeluaran bahan api biologi mesra alam.

 

Kata kunci: Asid askorbik; asid lemak; asid lemak bebas; kromatografi gas spektrofotometri jisim

 

REFERENCES

Abdo, S.M., El Diwani, G.I., El-Khatib, K.M., El-Enin, S.A.A., El-Galad, M.I., Basily, H.S. & Ali, G.H.2020. Primitive techno-economic study of bio-diesel and bio-active compound production from microalgae. Bulletin of the National Research Centre 44(1): 169.

Andersen, R.A. & Kawachi, M. 2005. Microalgae isolation techniques. Algal Culturing Techniques 83: 92.

Anitha, S. & Narayanan, J.S. 2012. Isolation and identification of microalgal strains and evaluation of their fatty acid profiles for biodiesel production. International Journal of Pharmaceutical and Biological Archives 3(4): 939-944.

Bhardwaj, N., Agrawal, K. & Verma, P. 2020. Algal biofuels: “an economic and effective alternative of fossil fuels”. In Microbial Strategies for Techno-economic Biofuel Production. Clean Energy Production Technologies, edited by Srivastava, N., Srivastava, M., Mishra, P.K. & Gupta, V.K. Singapore: Springer.

Brányiková, I., Maršálková, B., Doucha, J., Brányik, T., Bišová, K., Zachleder, V. & Vítová, M. 2011. Microalgae - Novel highly efficient starch producers. Biotechnology and Bioengineering 108(4): 766-776.

Breuer, G., Lamers, P.P., Martens, D.E., Draaisma, R.B. & Wijffels, R.H. 2012. The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresource Technology 124: 217-226.

Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology Advances 25(3): 294-306.

Davis, R., Aden, A. & Pienkos, P.T. 2011. Techno-economic analysis of autotrophic microalgae for fuel production. Applied Energy 88(10): 3524-3531.

Draaisma, R.B., Wijffels, R.H., Slegers, P.E., Brentner, L.B., Roy, A. & Barbosa, M.J. 2013. Food commodities from microalgae. Current Opinion in Biotechnology 24(2): 169-177.

Duong, V.T., Li, Y., Nowak, E. & Schenk, P.M. 2012. Microalgae isolation and selection for prospective biodiesel production. Energies 5(6): 1835-1849.

Foyer, C.H. 2017. Ascorbic acid. In Antioxidants in Higher Plants. Boca Raton: CRC Press. pp. 31-58.

Franz, A.K., Danielewicz, M.A., Wong, D.M., Anderson, L.A. & Boothe, J.R. 2013 Phenotypic screening with oleaginous microalgae reveals modulators of lipid productivity. ACS Chemical Biology 8(5): 1053-1062.

Gigova, L., Ivanova, N., Gacheva, G., Andreeva, R. & Furnadzhieva, S. 2012. Response of Trachydiscus minutus (xanthophyceae) to temperature and light. Journal of Phycology 48(1): 85-93.

Giwa, A., Adeyemia, I., Dindi, A., Lopeza, C.G.P., Lopresto, C.G., Curcio, S. & Chakraborty S. 2018. Techno-economic assessment of the sustainability of an integrated biorefinery from microalgae and Jatropha: A review and case study. Renewable and Sustainable Energy Reviews 88: 239-257.

Griffiths, M.J. & Harrison, S.T. 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology 21(5): 493-507.

Hasan, M.R. & Rina, C. 2009. Use of algae and aquatic macrophytes as feed in small-scale aquaculture: A review. Food and Agriculture Organization of the United Nations (FAO).

Hughes, A.D., Kelly, M.S., Black, K.D. & Stanley, M.S. 2012. Biogas from Macroalgae: Is it time to revisit the idea? Biotechnology for Biofuels 5(1): 1-7.

Johnson, X. & Alric, J. 2013. Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: Metabolic constraints for carbon partitioning between oil and starch. Eukaryotic Cell 12(6): 776-793.

Kardash, E. & Tur'yan, Y.I. 2005. Acid value determination in vegetable oils by indirect titration in aqueous-alcohol media. Croatica Chemica Acta 78(1): 99-103.

Kropat, J., Hong Hermesdorf, A., Casero, D., Ent, P., Castruita, M., Pellegrini, M., Merchant, S.S. & Malasarn, D. 2011. A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii. The Plant Journal 66(5): 770-780.

Mata, T.M., Martins, A.A. & Caetano, N.S. 2010. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews 14(1): 217-232.

Miao, X. & Wu, Q. 2006. Biodiesel production from heterotrophic microalgal oil. Bioresource Technology 97(6): 841-846.

Milledge, J.J. 2010. The potential yield of microalgal oil. A simple estimation. Biofuels International 4(2): 44-45.

Munir, N., Imtiaz, A., Sharif, N. & Naz, S. 2015. Optimization of growth conditions of different algal strains and determination of their lipid contents. The Journal of Animal & Plant Science 25(2): 546-553.

Narala, R.R., Garg, S., Sharma, K.K., Thomas-Hall, S.R., Deme, M., Li, Y. & Schenk, P.M. 2016. Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system. Frontiers Energy Research 4: 29.

Ngangkham, M., Ratha, S.K., Prasanna, R., Kumar, R., Babu, S., Dhar, D.W., Sarika, C. & Prasad, R.B.N. 2013. Substrate amendment mediated enhancement of the valorization potential of microalgal lipids. Biocatalysis and Agricultural Biotechnology 2(3): 240-246.

Parsaeimehr, A., Sun, Z., Dou, X. & Chen, Y.F. 2015. Simultaneous improvement in production of microalgal biodiesel and high-value alpha-linolenic acid by a single regulator acetylcholine. Biotechnology for Biofuels 8(1): 1-10.

Prommuak, C., Pavasant, P., Quitain, A.T., Goto, M. & Shotipruk, A. 2013. Simultaneous production of biodiesel and free lutein from Chlorella vulgaris. Chemical Engineering & Technology 36(5): 733-739.

Rizwan, M., Mujtaba, G. & Lee, K. 2017. Effects of iron sources on the growth and lipid/carbohydrate production of marine microalga Dunaliella tertiolecta. Biotechnology and Bioprocess Engineering 22(1): 68-75.

Saravanan, A.P., Pugazhendhi, A. & Mathimani, T. 2020. A comprehensive assessment of biofuel policies in the BRICS nations: Implementation, blending target and gaps. Fuel 272: 117635.

Seo, Y.H., Sung, M., Kim, B., Oh, Y.K., Kim, D.Y. & Han, J.I. 2015. Ferric chloride based downstream process for microalgae based biodiesel production. Bioresource Technology 181: 143-147.

Sharma, J., Kumar, S.S., Bishnoi, N.R. & Pugazhendhi, A. 2018. Enhancement of lipid production from algal biomass through various growth parameters. Journal of Molecular Liquids 269: 712-720.

Singh, P., Kumari, S., Guldhe, A., Misra, R., Rawat, I. & Bux, F. 2016. Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renewable and Sustainable Energy Reviews 55: 1-16.

Skjånes, K., Rebours, C. & Lindblad, P. 2013. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Critical Reviews In Biotechnology 33(2): 172-215.

Soratana, K. & Landis, A.E. 2011. Evaluating industrial symbiosis and algae cultivation from a life cycle perspective. Bioresource Technology 102(13): 6892-6901.

Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert, A. 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering 101(2): 87-96.

Srivastava, A. & Prasad, R. 2000. Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews 4(2): 111-133.

Sydney, E., Da Silva, T., Tokarski, A., Novak, A.D., De Carvalho, J.C., Woiciecohwski, A.L., Larroche, C. & Soccol, C.R. 2011. Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Applied Energy 88(10): 3291-3294.

Vermue, M.H., Eppink, M.H.M., Wijffels, R.H. & Van Den Berg, C. 2018. Multi-product microalgae biorefineries: From concept towards reality. Trends in Biotechnology 36(2): 216-227.

Wang, L., Li, Y., Chen, P., Min, M., Chen, Y., Zhu, J. & Ruan, R.R. 2010. Anaerobic digested airy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresource Technology 101(8): 2623-2628.

Yao, L., Gerde, J.A. & Wang, T. 2012. Oil extraction from microalga Nannochloropsis sp. with isopropyl alcohol. Journal of the American Oil Chemists' Society 89(12): 2279-2287.

Zalogin, T.R. 2012. Regulation and optimization of neutral lipid production by unicellular algae. The Weizmann Institute of Science (Israel). Ph.D. Thesis (Unpublished).

 

*Corresponding author; email: snq28@yahoo.com

 

 

 

previous