Sains Malaysiana 51(8)(2022):
2547-2557
http://doi.org/10.17576/jsm-2022-5108-15
Fatty Acid Profiling and
Physiochemical Characterization of Chlorella sorokiniana Potentially Used for Biofuel
Production
(Pemprofilan Asid Lemak dan Pencirian Fisiokimia Chlorella sorokiniana Berpotensi Digunakan untuk Pengeluaran Bahan Api Biologi)
MUHAMMAD AMMAR1, MARIA
OMER2, SITWAT AMAN2,3, ABDUL HAMEED4, SAFDAR
ABBAS1, SHABNAM SHAHEEN5, AIMAN ABBAS6 &
SAMINA N SHAKEEL1,3,*
1Department of Biochemistry Faculty
of Biological Sciences Quaid-i-Azam University
Islamabad Pakistan
2Institute of Molecular Biology and Biotechnology
University of Lahore Pakistan
3Department of Biological Sciences, Dartmouth College
Hanover NH USA
4Genomic Lab, Main Saidpur Road, Rawalpindi, Pakistan
5Department of Higher Education, Government Girls
Degree College Serai Naurang (Lakki Marwat), Peshawar,
Pakistan
6University of Veterinary and Animal Sciences,
Lahore, Pakistan
Received: 20
November 2021/Accepted: 28 February 2022
Abstract
Rising oil prices and climate change
have resulted in more emphasis on research into renewable biofuels. In this
study, different water samples were collected from local vicinities for the
isolation of local isolates of microalgae to check their potential towards the
production of biofuel by the addition of different chemical substrates. Five
different concentrations of ascorbic acid and iron (III) chloride (0, 1, 2.5, 5
& 10 µM) are used as substrates. Microscopic analysis evaluated that
samples belong to genus Chlorella and
further molecular identification showed that the samples are C. sorokiniana.
Among all the concentrations of ascorbic acid 2.5 µM is most effective against
the C. sorokiniana strain 1 (Safari Wildlife Park, Lahore) and C. sorokiniana strain 2 (Bahria Town, Lahore) while C. sorokiniana Strain 3 (SukhChane Society, Lahore) responded at 2.5 & 5 µM in term of biomass production.
FeCl3 (2.5 µM) is effective against C. sorokiniana strain 1 while the growth
of C. sorokiniana strain 2 and C. sorokiniana Strain 3 is inhibited. Lipid content analysis showed that only the C. sorokiniana strain 1 shows effective results at 1 & 2.5 µM of ascorbic acid and FeCl3,
respectively. Those concentrations which give the significant results of lipid
production were preceded for fatty acid profiling. Results indicate that the C. sorokiniana strain 1 can be considered as a source of alpha-linolenic acid; the basic
constituent of biofuel production. In this study, it is concluded that C. sorokiniana strain 1 is useful for the production of environment friendly biofuel.
Keywords: Ascorbic acid; fatty
acids; free fatty acids; gas chromatography mass spectrophotometry
Abstrak
Kenaikan harga minyak dan perubahan iklim telah menyebabkan penyelidikan berkaitan biobahan api yang boleh diperbaharui diberi lebih perhatian. Dalam kajian ini, sampel air yang berbeza telah dikumpul daripada kawasan sekitar untuk pengasingan mikroalga dan memeriksa potensinya terhadap pengeluaran bahan api biologi dengan penambahan substrat kimia yang berbeza. Lima kepekatan berbeza asid askorbik dan besi (III) klorida (0, 1, 2.5, 5
& 10 µM) digunakan sebagai substrat. Analisis mikroskopik menilai bahawa sampel tergolong dalam genus Chlorella dan pengecaman molekul selanjutnya mendedahkan bahawa sampel tersebut adalah C. sorokiniana.
Antara semua kepekatan asid askorbik 2.5 µM adalah paling berkesan terhadap C. sorokiniana strain 1 (Safari Wildlife Park, Lahore) dan C. sorokiniana strain 2 (Bahria Town, Lahore) manakala C. sorokiniana Strain 3 (SukhChane Society, Lahore) bertindak balas pada 2.5 & 5
µM daripada pengeluaran biojisim. FeCl3 (2.5 µM) berkesan terhadap C. sorokiniana strain 1 manakala pertumbuhan C. sorokiniana strain 2 dan C. sorokiniana Strain 3 dihalang. Analisis kandungan lipid mendedahkan bahawa hanya C. sorokiniana strain 1 menunjukkan hasil yang berkesan masing-masing pada 1 & 2.5 µM asid askorbik dan FeCl3. Kepekatan yang memberikan hasil ketara penghasilan lipid telah didahulukan untuk pemprofilan asid lemak. Keputusan menunjukkan bahawa C. sorokiniana strain 1 boleh dianggap sebagai sumber asid alfa-linolenik; juzuk asas pengeluaran bahan api biologi. Dalam kajian ini, disimpulkan bahawa C. sorokiniana strain 1 berguna untuk pengeluaran bahan api biologi mesra alam.
Kata kunci: Asid askorbik; asid lemak; asid lemak bebas; kromatografi gas spektrofotometri jisim
REFERENCES
Abdo, S.M., El Diwani, G.I., El-Khatib, K.M., El-Enin,
S.A.A., El-Galad, M.I., Basily, H.S. & Ali, G.H.2020. Primitive
techno-economic study of bio-diesel and bio-active compound production from
microalgae. Bulletin of the National
Research Centre 44(1): 169.
Andersen,
R.A. & Kawachi, M. 2005. Microalgae isolation techniques. Algal Culturing Techniques 83: 92.
Anitha,
S. & Narayanan, J.S. 2012. Isolation and identification of microalgal
strains and evaluation of their fatty acid profiles for biodiesel production. International Journal of Pharmaceutical and
Biological Archives 3(4):
939-944.
Bhardwaj, N., Agrawal, K. & Verma, P. 2020. Algal
biofuels: “an economic and effective alternative of fossil fuels”. In Microbial
Strategies for Techno-economic Biofuel Production. Clean Energy Production
Technologies, edited by Srivastava, N., Srivastava, M., Mishra, P.K. &
Gupta, V.K. Singapore: Springer.
Brányiková,
I., Maršálková, B., Doucha, J., Brányik, T., Bišová, K., Zachleder, V. &
Vítová, M. 2011. Microalgae - Novel highly efficient starch producers. Biotechnology and Bioengineering 108(4): 766-776.
Breuer,
G., Lamers, P.P., Martens, D.E., Draaisma, R.B. & Wijffels, R.H. 2012. The
impact of nitrogen starvation on the dynamics of triacylglycerol accumulation
in nine microalgae strains. Bioresource
Technology 124: 217-226.
Chisti,
Y. 2007. Biodiesel from microalgae. Biotechnology
Advances 25(3): 294-306.
Davis,
R., Aden, A. & Pienkos, P.T. 2011. Techno-economic analysis of autotrophic
microalgae for fuel production. Applied
Energy 88(10): 3524-3531.
Draaisma,
R.B., Wijffels, R.H., Slegers, P.E., Brentner, L.B., Roy, A. & Barbosa,
M.J. 2013. Food commodities from microalgae. Current Opinion in Biotechnology 24(2): 169-177.
Duong,
V.T., Li, Y., Nowak, E. & Schenk, P.M. 2012. Microalgae isolation and
selection for prospective biodiesel production. Energies 5(6):
1835-1849.
Foyer,
C.H. 2017. Ascorbic acid. In Antioxidants
in Higher Plants. Boca Raton: CRC
Press. pp. 31-58.
Franz,
A.K., Danielewicz, M.A., Wong, D.M., Anderson, L.A. & Boothe, J.R. 2013
Phenotypic screening with oleaginous microalgae reveals modulators of lipid
productivity. ACS Chemical Biology 8(5): 1053-1062.
Gigova,
L., Ivanova, N., Gacheva, G., Andreeva, R. & Furnadzhieva, S. 2012.
Response of Trachydiscus minutus (xanthophyceae) to temperature and
light. Journal of Phycology 48(1): 85-93.
Giwa, A., Adeyemia, I., Dindi, A., Lopeza, C.G.P., Lopresto,
C.G., Curcio, S. & Chakraborty S. 2018. Techno-economic assessment of the
sustainability of an integrated biorefinery from microalgae and Jatropha: A
review and case study. Renewable and
Sustainable Energy Reviews 88: 239-257.
Griffiths,
M.J. & Harrison, S.T. 2009. Lipid productivity as a key characteristic for
choosing algal species for biodiesel production. Journal of Applied Phycology 21(5):
493-507.
Hasan,
M.R. & Rina, C. 2009. Use of algae and aquatic macrophytes as feed in
small-scale aquaculture: A review. Food
and Agriculture Organization of the United Nations (FAO).
Hughes,
A.D., Kelly, M.S., Black, K.D. & Stanley, M.S. 2012. Biogas from
Macroalgae: Is it time to revisit the idea? Biotechnology
for Biofuels 5(1): 1-7.
Johnson,
X. & Alric, J. 2013. Central carbon metabolism and electron transport in Chlamydomonas
reinhardtii: Metabolic constraints for carbon partitioning between oil and
starch. Eukaryotic Cell 12(6): 776-793.
Kardash,
E. & Tur'yan, Y.I. 2005. Acid value determination in vegetable oils by
indirect titration in aqueous-alcohol media. Croatica Chemica Acta 78(1):
99-103.
Kropat,
J., Hong Hermesdorf, A., Casero, D., Ent, P., Castruita, M., Pellegrini, M.,
Merchant, S.S. & Malasarn, D. 2011. A revised mineral nutrient supplement
increases biomass and growth rate in Chlamydomonas reinhardtii. The Plant Journal 66(5): 770-780.
Mata,
T.M., Martins, A.A. & Caetano, N.S. 2010. Microalgae for biodiesel
production and other applications: A review. Renewable and Sustainable Energy Reviews 14(1): 217-232.
Miao, X.
& Wu, Q. 2006. Biodiesel production from heterotrophic microalgal oil. Bioresource Technology 97(6): 841-846.
Milledge,
J.J. 2010. The potential yield of microalgal oil. A simple estimation. Biofuels International 4(2): 44-45.
Munir,
N., Imtiaz, A., Sharif, N. & Naz, S. 2015. Optimization of growth
conditions of different algal strains and determination of their lipid
contents. The Journal of Animal
& Plant Science 25(2): 546-553.
Narala, R.R., Garg, S., Sharma, K.K., Thomas-Hall, S.R.,
Deme, M., Li, Y. & Schenk, P.M. 2016. Comparison of microalgae cultivation
in photobioreactor, open raceway pond, and a two-stage hybrid system. Frontiers
Energy Research 4: 29.
Ngangkham,
M., Ratha, S.K., Prasanna, R., Kumar, R., Babu, S., Dhar, D.W., Sarika, C.
& Prasad, R.B.N. 2013. Substrate amendment mediated enhancement of the
valorization potential of microalgal lipids. Biocatalysis and Agricultural Biotechnology 2(3): 240-246.
Parsaeimehr,
A., Sun, Z., Dou, X. & Chen, Y.F. 2015. Simultaneous improvement in
production of microalgal biodiesel and high-value alpha-linolenic acid by a single
regulator acetylcholine. Biotechnology
for Biofuels 8(1): 1-10.
Prommuak,
C., Pavasant, P., Quitain, A.T., Goto, M. & Shotipruk, A. 2013.
Simultaneous production of biodiesel and free lutein from Chlorella vulgaris. Chemical Engineering & Technology 36(5):
733-739.
Rizwan,
M., Mujtaba, G. & Lee, K. 2017. Effects of iron sources on the growth and
lipid/carbohydrate production of marine microalga Dunaliella tertiolecta. Biotechnology and Bioprocess Engineering 22(1): 68-75.
Saravanan,
A.P., Pugazhendhi, A. & Mathimani, T. 2020. A comprehensive assessment of
biofuel policies in the BRICS nations: Implementation, blending target and
gaps. Fuel 272: 117635.
Seo,
Y.H., Sung, M., Kim, B., Oh, Y.K., Kim, D.Y. & Han, J.I. 2015. Ferric
chloride based downstream process for microalgae based biodiesel production. Bioresource Technology 181: 143-147.
Sharma,
J., Kumar, S.S., Bishnoi, N.R. & Pugazhendhi, A. 2018. Enhancement of lipid
production from algal biomass through various growth parameters. Journal of Molecular Liquids 269:
712-720.
Singh,
P., Kumari, S., Guldhe, A., Misra, R., Rawat, I. & Bux, F. 2016. Trends and
novel strategies for enhancing lipid accumulation and quality in microalgae. Renewable and Sustainable Energy Reviews 55:
1-16.
Skjånes,
K., Rebours, C. & Lindblad, P. 2013. Potential for green microalgae to
produce hydrogen, pharmaceuticals and other high value products in a combined
process. Critical Reviews In
Biotechnology 33(2): 172-215.
Soratana,
K. & Landis, A.E. 2011. Evaluating industrial symbiosis and algae
cultivation from a life cycle perspective. Bioresource
Technology 102(13):
6892-6901.
Spolaore,
P., Joannis-Cassan, C., Duran, E. & Isambert, A. 2006. Commercial
applications of microalgae. Journal of
Bioscience and Bioengineering 101(2): 87-96.
Srivastava,
A. & Prasad, R. 2000. Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews 4(2):
111-133.
Sydney,
E., Da Silva, T., Tokarski, A., Novak, A.D., De Carvalho, J.C., Woiciecohwski,
A.L., Larroche, C. & Soccol, C.R. 2011. Screening of microalgae with
potential for biodiesel production and nutrient removal from treated domestic
sewage. Applied Energy 88(10):
3291-3294.
Vermue,
M.H., Eppink, M.H.M., Wijffels, R.H. & Van Den Berg, C. 2018. Multi-product
microalgae biorefineries: From concept towards reality. Trends in Biotechnology 36(2): 216-227.
Wang, L.,
Li, Y., Chen, P., Min, M., Chen, Y., Zhu, J. & Ruan, R.R. 2010. Anaerobic
digested airy manure as a nutrient supplement for cultivation of oil-rich green
microalgae Chlorella sp. Bioresource
Technology 101(8): 2623-2628.
Yao, L.,
Gerde, J.A. & Wang, T. 2012. Oil extraction from microalga Nannochloropsis sp. with isopropyl alcohol. Journal of
the American Oil Chemists' Society 89(12):
2279-2287.
Zalogin,
T.R. 2012. Regulation and optimization of neutral lipid production by
unicellular algae. The Weizmann
Institute of Science (Israel). Ph.D. Thesis (Unpublished).
*Corresponding author; email: snq28@yahoo.com
|