Sains Malaysiana 51(8)(2022): 2633-2643

http://doi.org/10.17576/jsm-2022-5108-22

 

Is Facebook PROPHET Superior than Hybrid ARIMA Model to Forecast Crude Oil Price?

(Adakah PROPHET Facebook Lebih Hebat daripada Model ARIMA Hibrid untuk Meramalkan Harga Minyak Mentah?)

 

MUKHRIZ IZRAF AZMAN AZIZ1, MOHAMAD HARDYMAN BARAWI2 & HAZRUL SHAHIRI3,*

 

1School of Economic, Finance and Banking (SEFB), Universiti Utara Malaysia, 06010 Sintok, Kedah Darul Aman, Malaysia

2Faculty of Cognitive Sciences and Human Development, University Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

3Center for Sustainable and Inclusive Development, Faculty of Economics and Management,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 16 August 2021/Accepted: 30 January 2022

 

Abstract

Oil price forecasting has received a great deal of attention from practitioners and researchers alike, but it remains a difficult topic because of its dependency on a variety of factors, including the economic cycle, international relations, and geopolitics. Forecasting the price of oil is a difficult but gratifying task. Motivated by this issue, we present a robust model for accurate crude oil price forecasting using ARIMA and Prophet models based on machine learning technique to produce a reliable weekly and monthly crude oil price predictions. We apply the SavitzkyGolay smoothing filter to get a better denoising performance for our forecast models. For model evaluation, we apply cross validation with sliding windows on both models and compares the performances using RMSE and MAPE. The results show that the ARIMA- based machine learning approach performs better as compared to the Prophet model for both one-week and one-month forecast ahead intervals.

 

Keywords: ARIMA; crude oil price; forecasting; Prophet

 

Abstrak

Ramalan harga minyak telah mendapat banyak perhatian daripada pengamal dan penyelidik, tetapi ia kekal sebagai topik yang sukar kerana pergantungannya pada pelbagai faktor, termasuk kitaran ekonomi, hubungan antarabangsa dan geopolitik. Meramalkan harga minyak adalah tugas yang sukar tetapi menggembirakan. Didorong oleh isu ini, kami mempersembahkan model teguh untuk ramalan harga minyak mentah yang tepat menggunakan model ARIMA dan Prophet berdasarkan teknik pembelajaran mesin untuk menghasilkan ramalan harga minyak mentah mingguan dan bulanan yang boleh dipercayai. Kami menggunakan penapis pelicinan SavitzkyGolay untuk mendapatkan prestasi nyahbunyi yang lebih baik untuk model ramalan kami. Untuk penilaian model, kami menggunakan pengesahan silang dengan tingkap gelongsor pada kedua-dua model dan membandingkan prestasi menggunakan RMSE dan MAPE. Keputusan menunjukkan bahawa pendekatan pembelajaran mesin berasaskan ARIMA menunjukkan prestasi yang lebih baik berbanding model Prophet untuk kedua-dua ramalan satu minggu dan satu bulan ke hadapan.

 

Kata kunci: ARIMA; harga minyak mentah; ramalan; Prophet

 

References

Abdollahi, H. & Ebrahimi, S.B. 2020. A new hybrid model for forecasting Brent crude oil price. Energy 200: 117520.

Adilah Azhari, Mukhriz Izraf Azman Aziz, Yong Kang Cheah & Hazrul Shahiri. 2021. Oil price shocks and energy stock returns of ASEAN-5 countries: Evidence from Ready’s (2018) decomposition technique in a Markov regime switching framework. Sains Malaysiana 50(4): 1143-1156.

Alquist, R. & Kilian, L. 2010. What do we learn from the price of crude oil futures? Journal of Applied Econometrics 25(4): 539-573.

Antoni, Zulkefly Abdul Karim & Chan Weng. 2020. What drives the volatility of metal market? The role of world oil price and us factors volatility. Pertanika Journal of Social Sciences and Humanities 28(1): 661-677.

Bai, Y., Li, X., Yu, H. & Jia, S. 2022. Crude oil price forecasting incorporating news text. International Journal of Forecasting 38(1): 367-383.

Baruník, J., Kočenda, E. & Vácha, L. 2016. Gold, oil, and stocks: Dynamic correlations. International Review of Economics & Finance 42: 186-201.

Baumeister, C. & Kilian, L. 2015. Forecasting the real price of oil in a changing world: A forecast combination approach. Journal of Business & Economic Statistics 33(3): 338-351.

Bonaccorso, G. 2018. Machine Learning Algorithms: Popular Algorithms for Data Science and Machine Learning. Packt Publishing Ltd.

Butler, S., Kokoszka, P., Miao, H. & Shang, H.L. 2021. Neural network prediction of crude oil futures using B-splines. Energy Economics 94: 105080.

Chai, J., Xing, L.M., Zhou, X.Y., Zhang, Z.G. & Li, J.X. 2018. Forecasting the WTI crude oil price by a hybrid-refined method. Energy Economics 71: 114-127.

Chen, J., 2019. Investopedia - ARIMA Technical Analysis. https://www.investopedia.com/terms/a/autoregressive-integrated-moving-averagearima.asp

Chen, Y., Zhang, C., He, K. & Zheng, A. 2018. Multi-step-ahead crude oil price forecasting using a hybrid grey wave model. Physica A: Statistical Mechanics and its Applications 501: 98-110.

Elshendy, M., Colladon, A.F., Battistoni, E. & Gloor, P.A. 2018. Using four different online media sources to forecast the crude oil price. Journal of Information Science 44(3): 408-421.

Engle, R.F. & Granger, C.W.J. 1987. Co-integration and error correction: Representation, estimation, and testing. Econometrica: Journal of the Econometric Society 55: 251-276.

Ewing, B.T. & Thompson, M.A. 2007. Dynamic cyclical co-movements of oil prices with industrial production, consumer prices, unemployment, and stock prices. Energy Policy 35(11): 5535-5540.

Garratt, A., Vahey, S.P. & Zhang, Y. 2019. Real-time forecast combinations for the oil price. Journal of Applied Economics 34: 456-462.

Güleryüz, D. & Özden, E. 2020. The prediction of brent crude oil trend using LSTM and Facebook PROPHET. Avrupa Bilim ve Teknoloji Dergisi 20: 1-9.

Guo, J. 2019. Oil price forecast using deep learning and ARIMA. International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI). IEEE. pp. 241-247.

Hamilton, J.D. 1983. Oil and the macroeconomy since World War II. Journal of Political Economy 91(2): 228-248.

Harvey, A.C. & Peters, S. 1990. Estimation procedures for structural time series models. Journal of Forecasting 9(2): 89-108.

Huang, L. & Wang, J. 2018. Global crude oil price prediction and synchronization-based accuracy evaluation using random wavelet neural network. Energy 151: 875-888.

Humaida Banu Samsudin & Yap Chiou Shin 2019.  Relationship between crude oil price with foreign exchange rates and interest rates of South East Asian Countries. Journal of Quality Measurement and Analysis 15(2): 1-8.

Kane, M.J., Price, N., Scotch, M. & Rabinowitz, P. 2014. Comparison of ARIMA and Random Forest time series models for prediction of avian influenza H5N1 outbreaks. BMC Bioinformatics 15(1): 1-9.

Kaufmann, R.K. 2011. The role of market fundamentals and speculation in recent price changes for crude oil. Energy Policy 39(1): 105-115.

Kaufmann, R.K. & Ullman, B. 2009. Oil prices, speculation, and fundamentals: Interpreting causal relations among spot and futures prices. Energy Economics 31(4): 550-558.

Kilian, L. & Murphy, D.P. 2014. The role of inventories and speculative trading in the global market for crude oil. Journal of Applied Econometrics 29(3): 454-478.

Low Wah & Mohd Azlan Zaidi. 2019. Oil price shocks, global economic policy uncertainty, geopolitical risk, and stock price in Malaysia: Factor augmented var approach. Economic Research 32(1): 3701-3733.

Menculini, L., Marini, A., Proietti, M., Garinei, A., Bozza, A., Moretti, C. & Marconi, M. 2021. Comparing Prophet and deep learning to ARIMA in forecasting wholesale food prices. Forecasting 3(3): 644-662.

Mensi, W., Lee, Y.J., Vo, X.V. & Yoon, S.M. 2021. Quantile connectedness among gold, gold mining, silver, oil and energy sector uncertainty indexes. Resources Policy 74: 102450.

Miao, H., Ramchander, S., Wang, T. & Yang, J. 2018. The impact of crude oil inventory announcements on prices: Evidence from derivatives markets. Journal of Futures Markets 38(1): 38-65.

Nademi, A. & Nademi, Y. 2018. Forecasting crude oil prices by a semiparametric Markov switching model: OPEC, WTI, and Brent cases. Energy Economics 74: 757-766.

Rodríguez-Rodríguez, I., González Vidal, A., Ramallo González, A.P. & Zamora, M.Á. 2018. Commissioning of the controlled and automatized testing facility for human behavior and control (CASITA). Sensors 18(9): 2829.

Sadeghi, M. & Behnia, F. 2018. Optimum window length of Savitzky-Golay filters with arbitrary order. arXiv preprint arXiv:1808.10489.

Sheppard, D., McCormick, M., Raval, A., Brower, D. & Lockett, H. 2020. US oil price below zero for first time in history. Financial Times https://www.ft.com/content/a5292644-958d-4065-92e8-ace55d766654

Sornette, D., Woodard, R. & Zhou, W.X. 2009. The 2006-2008 oil bubble: Evidence of speculation, and prediction. Physica A: Statistical Mechanics and its Applications 388(8): 1571-1576.

Taylor, S.J. & Letham, B. 2018. Forecasting at scale. The American Statistician 72(1): 37-45.

Taylor, S. & Letham, B. 2017. Prophet: Automatic forecasting procedure. R package version 0.11.

Ting, Y. & Zhang, Y.J. 2017. Forecasting crude oil prices with the Google Index. Energy Procedia 105: 3772-3776.

Wang, J., Zhou, H., Hong, T., Li, X. & Wang, S. 2020. A multi-granularity heterogeneous combination approach to crude oil price forecasting. Energy Economics 91: 104790.

Wang, J.J., Wang, J.Z., Zhang, Z.G. & Guo, S.P. 2012. Stock index forecasting based on a hybrid model. Omega 40(6): 758-766.

Wang, X., Chen, K. & Tan, X. 2018. Forecasting the direction of short-term crude oil price changes with genetic-fuzzy information distribution. Mathematical Problems in Engineering 2018: 3868923.

Yao, T. & Zhang, Y.J. 2017. Forecasting crude oil prices with the Google index. Energy Procedia 105: 3772-3776.

Zhao, L.T., Wang, S.G. & Zhang, Z.G. 2020. Oil price forecasting using a time-varying approach. Energies 13(6): 1403.

Zhou, Z-B. & Dong, X-C. 2012. Analysis about the seasonality of China's crude oil import based on X-12-ARIMA. Energy 42(1): 281-288.

Zhou, Y., Li, T., Shi, J. & Qian, Z. 2019. A CEEMDAN and XGBOOST-Based approach to forecast crude oil prices. Complexity 2019 (Special Issue): 4392785.

 

*Corresponding author; email: hizuan@ukm.edu.my

 

 

previous