Sains Malaysiana 51(8)(2022):
2645-2654
http://doi.org/10.17576/jsm-2022-5108-23
Performance of Levenberg-Marquardt
Neural Network Algorithm in Air Quality Forecasting
(Prestasi Algoritma Rangkaian Neuron Levenberg-Marquardt dalam Ramalan Kualiti Udara)
CHO
KAR MUN1, NUR HAIZUM ABD RAHMAN1,* & ISZUANIE SYAFIDZA CHE ILIAS2
1Department of Mathematics and Statistics,
Faculty of Science, Universiti Putra Malaysia 43400
UPM Serdang, Selangor Darul Ehsan, Malaysia
2Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
Received: 2 July 2021/Accepted: 30 January 2022
Abstract
Levenberg-Marquardt
algorithm and conjugate gradient method are frequently used for optimization in
multi-layer perceptron (MLP). However, both algorithms have mixed conclusions
in optimizing MLP in time series forecasting. This study uses autoregressive
integrated moving average (ARIMA) and MLP with both Levenberg-Marquardt
algorithm and conjugate gradient method. These methods were used to predict the
Air Pollutant Index (API) in Malaysia's central region where represent urban
and residential areas. The performances were discussed and compared using the
mean square error (MSE) and mean absolute percentage error (MAPE). The result
shows that MLP models have outperformed ARIMA models where MLP with
Levenberg-Marquardt algorithm outperformed the conjugate gradient method.
Keywords: Algorithm; ARIMA; artificial neural network;
forecasting; multi-layer perceptron
Abstrak
Algoritma Levenberg-Marquardt dan kaedah kecerunan konjugat sering digunakan untuk pengoptimuman dalam perceptron pelbagai lapisan (MLP). Walau bagaimanapun, kedua-dua algoritma mempunyai kesimpulan yang berbeza dalam mengoptimumkan ramalan siri masa menggunakan MLP. Kajian ini menggunakan purata bergerak bersepadu autoregresif (ARIMA) dan MLP dengan kedua-dua algoritma Levenberg-Marquardt dan kaedah kecerunan konjugat. Kaedah ini digunakan untuk meramalkan Indeks Pencemaran Udara (IPU) di wilayah tengah Malaysia yang mewakili kawasan bandar dan kediaman. Prestasi dibincang dan dibandingkan dengan menggunakan ralat kuasa dua min (MSE) dan ralat peratusan mutlak (MAPE). Hasilnya menunjukkan bahawa model MLP telah mengatasi model ARIMA dengan MLP dan algoritma Levenberg-Marquardt mengatasi kaedah kecerunan konjugat.
Kata kunci: Algoritma; ARIMA; perceptron pelbagai lapisan; ramalan; rangkaian neuron tiruan
References
An,
N.H. & Anh, D.T. 2015. Comparison of strategies for multi-step-ahead
prediction of time series using neural network. 2015 International
Conference on Advanced Computing and Applications (ACOMP). pp. 142-149.
Chen, X., Wang, G., Zhou, W., Chang, S. & Sun, S.
2006. Efficient Sigmoid function for neural networks based FPGA design. International
Conference on Intelligent Computing. pp. 672-677.
De Cosmi, V., Mazzocchi, A., Milani, G.P., Calderini,
E., Scaglioni, S., Bettocchi, S., D’Oria, V., Langer, T., Spolidoro, G.C.I.,
Leone, L., Battezzati, A., Bertoli, S., Leone, A., De Amicis, R.S., Foppiani,
A., Agostoni, C. & Grossi, E. 2020. Prediction of resting energy
expenditure in children: May artificial neural networks improve our accuracy? Journal
of Clinical Medicine 9(4): 1026.
Dong, G., Fataliyev, K. & Wang, L. 2013. One-Step
and multi-step ahead stock prediction using backpropagation neural networks. 2013
9th International Conference on Information, Communications & Signal
Processing. pp. 1-5.
Evans, N.J. 2019. Assessing the practical differences
between model selection methods in inferences about choice response time tasks. Psychonomic Bulletin & Review 26(4): 1070-1098.
Jain, A.K., Mao,
J. & Mohiuddin, K.M. 1996. Artificial Neural Networks: A tutorial. Computer 29(3): 31-44.
Kaastra, I. & Boyd, M. 1996. Designing a Neural
Network for forecasting financial and economic time series. Neurocomputing 10(3): 215-236.
Kavzoglu, T. 1999. Determining optimum structure for
Artificial Neural Networks. Proceedings of the 25th Annual
Technical Conference and Exhibition of the Remote Sensing Society, Cardiff,
UK. 8-10 September. pp. 675-682.
Kermani, B.G., Schiffman, S.S. & Nagle, H.T. 2005.
Performance of the Levenberg–Marquardt neural network training method in
electronic nose applications. Sensors and Actuators B: Chemical 110(1):
13-22.
Mahmoud Khaki, Ismail Yusoff, Nur Fadilah Islami &
Nur Hayati Hussin. 2016. Artificial Neural network technique for modeling of
groundwater level in Langat Basin, Malaysia. Sains Malaysiana 45(1):
19-28.
Lodwich, A., Rangoni, Y. & Breuel, T. 2009.
Evaluation of robustness and performance of early stopping rules with multi
layer perceptrons. 2009 International Joint Conference on Neural Networks.
pp. 1877-1884.
Nurulilyana Sansuddin, Nor Azam Ramli, Ahmad Shukri
Yahaya, Noor Faizah Fitri Md Yusof, Nurul Adyani Ghazali & Wesam Ahmed Al
Madhoun. 2011. Statistical analysis of PM10 concentrations at
different locations in Malaysia. Environmental Monitoring and Assessment 180(1-4): 573-588.
Saratha Sathasivam, Mohd. Asyraf Mansor, Ahmad Ismail,
Siti Jamaludin, Mohd Kasihmuddin, & Mustafa Mamat. 2020. Novel random k
satisfiability for k ≤ 2 in Hopfield neural network. Sains Malaysiana 49(11): 2847-2857.
Sathya, R. & Annamma Abraham. 2013. Comparison of
supervised and unsupervised learning algorithms for pattern classification. International
Journal of Advanced Research in Artificial Intelligence 2 (February). https://dx.doi.org/10.14569/IJARAI.2013.020206
Sulafa Hag Elsafi. 2014. Artificial Neural Networks
(ANNs) for flood forecasting at Dongola Station in the River Nile, Sudan. Alexandria
Engineering Journal 53(3): 655-662.
Sheela Tiwari, Ram Naresh & Rahul Jha. 2013.
Comparative study of backpropagation algorithms in neural network based
identification of power system. International Journal of Computer Science
and Information Technology 5(August): 93-107.
Mina Torabi & Mohammad-Mehdi Hosseini. 2018. A new
descent algorithm using the three-step discretization method for solving
unconstrained optimization problems. Mathematics 6 (April): 63.
Yu, H. & Wilamowski, B.M. 2011.
Lavenberg-Marquardt Training. In The Industrial Electronics Handbook:
Intelligent Systems, 2nd ed. Chapter 12, edited by Wilamowski, B.M. & Irwin, J.D. Boca Raton: CRC Press.
pp. 12-1 to 12-15.
Zafer Cömert & Adnan Fatih Kocamaz. 2017. A Study
of artificial neural network training algorithms for classification of
cardiotocography signals. Bitlis Eren University Journal of Science and
Technology 7(2): 93-103.
Zhang, G.P. 2012. Neural networks for time-series
forecasting BT. In Handbook of Natural Computing, edited by Rozenberg,
G., Bäck, T. & Kok, J.N. Berlin, Heidelberg: Springer Berlin Heidelberg.
pp. 461-477.
Zhang, G., Eddy Patuwo, B. & Hu. M.Y. 1998.
Forecasting with artificial neural networks: The state of the art. International
Journal of Forecasting 14(1): 35-62.
Zhu, L., Lim, C. & Zhang, J. 2020. Prediction of
risk: Decoding the serial dependence of stock return volatility with Copula. Journal
of Hospitality & Tourism Research 45(1): 6-27.
*Corresponding
author; email: nurhaizum_ar@upm.edu.my
|