Sains Malaysiana 51(9)(2022):
2937-2954
http://doi.org/10.17576/jsm-2022-5109-16
Zirconium(IV)-BTC-Based MOF Modified with Nickel as a Catalyst for
Hydrogenation of Citronellal
(Zirkonium(IV)-BTC-Berdasarkan MOF Terubah Suai dengan Nikel sebagai Pemangkin untuk Penghidrogenan Sitronela)
WITRI WAHYU LESTARI1,*, ARIFTI NUR LAILY AQNA1, FAUZAN
IBNU PRIHADIYONO1, RIANDY PUTRA1, MAULIDAN FIRDAUS1,
VENANSIA AVELIA ROSARI1, UBED SONAI FAHRUDIN ARROZI2 & GRANDPRIX T. M. KADJA3,4,5
1Department of Chemistry, Faculty of Mathematics
and Natural Sciences, Sebelas Maret University, Jl. Ir Sutami No. 36A, Kentingan-Jebres, Surakarta, Central Java,
Indonesia
2Department of Chemistry, Faculty of Mathematics
and Science, State University of Malang, Jl. Semarang 5, Malang 65145, East
Java, Indonesia
3Division of Inorganic and Physical Chemistry,
Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
4Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
5Research Center for
Nano sciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
Received: 14
January 2022/Accepted: 19 April 2022
Abstract
This
study is designed to determine the effect of nickel (Ni) metal bearing on
zirconium(IV) benzene 1,3,5-tricarboxylate based MOF, [Zr6O4(OH)4(O2C2H3)6(BTC)2]
(Zr-BTC) and its application as a catalyst in
the citronellal hydrogenation. The synthesis of Zr-BTC
was carried out under solvothermal condition, while the wet impregnation method
was used to synthesize 2.5 wt.% Ni/Zr-BTC. The
catalytic test of citronellal hydrogenation was performed in a batch reactor at
80 °C for 6 h with various hydrogen pressures. XRD characterization showed the
suitability of the prominent peaks of Zr-BTC to the
standard pattern, while Ni metal could not be detected clearly but was
confirmed by EDX analysis. FTIR analysis showed a significant shift in the
wavenumber from 1722 cm-1 to 1567 cm-1 indicating
coordination of deprotonated ligands to the Zr4+ metal ions. Nickel
loading reduced the surface area of Zr-BTC to 523 m2/g
and the pore volume to 0.11 cc/g according to the nitrogen sorption isotherm.
The catalytic tests showed that 30% Ni loading enhanced the activity and
selectivity of Zr-BTC in citronellal hydrogenation,
resulting in 62.1% yield of isopulegol (for batch
reactor) and 14.1% yield of citronellol (for hydrogen balloon).
Keywords: Catalyst; citronellal; hydrogenation; MOFs; Ni/Zr-BTC
Abstrak
Kajian ini adalah untuk menentukan kesan galas logam nikel (Ni) ke atas zirkonium(IV) benzena 1,3,5-trikarboksilat berasaskan MOF, [Zr6O4(OH)4(O2C2H3)6(BTC)2]
(Zr-BTC) dan penggunaannya sebagai pemangkin dalam penghidrogenan sitronela. Sintesis Zr-BTC telah dijalankan dalam keadaan solvoterma, manakala kaedah impregnasi basah digunakan untuk mensintesis 2.5 wt.% Ni/Zr-BTC. Ujian pemangkin hidrogenasi sitronela dilakukan dalam reaktor kelompok pada suhu 80 °C selama 6 jam dengan pelbagai tekanan hidrogen. Pencirian XRD menunjukkan puncak tajam pada Zr-BTC sepadan dengan puncak piawai, manakala logam Ni tidak dapat dikesan dengan jelas tetapi disahkan oleh analisis EDX. Analisis FTIR menunjukkan perubahan ketara pada nombor gelombang daripada 1722 cm-1 kepada 1567 cm-1 yang menunjukkan koordinasi ligan terdeprotonasi kepada ion logam Zr4+. Pertambahan nikel telah mengurangkan luas permukaan Zr-BTC kepada 523 m2/g dan isi padu liang kepada 0.11 cc/g mengikut isoterma penyerapan nitrogen. Ujian pemangkin pula mendedahkan bahawa penambahan 30% Ni meningkatkan aktiviti dan kepemilihan Zr-BTC dalam penghidrogenan sitronela, seterusnya menghasilkan 62.1% isopulegol (untuk reaktor kelompok)
dan 14.1% sitronelo (untuk belon hidrogen).
Kata kunci: MOFs; Ni/Zr-BTC; pemangkin; penghidrogenan; sitronela
References
Ardila-Suárez,
C., Díaz-Lasprilla, A.M., Díaz-Vaca, L.A., Balbuena, P.B., Baldovino-Medrano,
V.G. & Ramírez-Caballero, G.E. 2019. Synthesis, characterization, and
post-synthetic modification of a micro/mesoporous zirconium-tricarboxylate
metal-organic framework: Towards the addition of acid active sites. CrystEngComm 21(19): 3014-3030.
Bai, Y., Dou, Y., Xie, L.H., Rutledge, W., Li, J.R. & Zhou, H.C. 2016.
Zr-based metal-organic frameworks: Design, synthesis, structure, and
applications. Chemical Society Reviews 45(8): 2327-2367.
Bettahar, M.M. 2020. The hydrogen spillover effect. A misunderstanding
story. Catalysis Reviews - Science and Engineering 64(1): 87-125.
Bueken, B., Reinsch, H., Reimer, N., Stassen, I., Vermoortele, F.,
Ameloot, R., Stock, N., Kirschhock, C.E.A. & De Vos, D. 2014. A zirconium
squarate metal-organic framework with modulator-dependent molecular sieving
properties. Chemical Communications 50(70): 10055-10058.
Cavka, J.H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga,
S. & Lillerud, K.P. 2008. A new zirconium inorganic building brick forming
metal organic frameworks with exceptional stability. Journal of the American
Chemical Society 130(42): 13850-13851.
Chuah, G.K., Liu, S.H., Jaenicke, S. & Harrison, L.J. 2001. Cyclisation
of citronellal to isopulegol catalysed by hydrous zirconia and other solid
acids. Journal of Catalysis 200(2): 352-359.
Cirujano, F.G., Corma, A. & Xamena, F.X.L.I. 2015. Conversion of
Levulinic acid into chemicals: Synthesis of biomass derived levulinate esters
over Zr-containing MOFs. Chemical Engineering Science 124: 52-60.
Cirujano, F.G., Corma, A. & Xamena, F.X.L.I. 2012. MOFs as
multifunctional catalysts: One-pot synthesis of menthol from citronellal over a
bifunctional MIL-101 catalyst. Dalton Transactions 41(14): 4249-4254.
Claus, P. 1998. Selective hydrogenation of α,β-unsaturated
aldehydes and other C=O and C=C bonds containing compounds. Topics in
Catalysis 5: 51-62.
Feng, D., Gu, Z.Y., Li, J.R., Jiang, H.L., Wei, Z. & Zhou, H.C. 2012.
Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with
ultrahigh stability as biomimetic catalysts. Angewandte Chemie -
International Edition 51(41): 10307-10310.
Furukawa, H., Gándara, F., Zhang, Y.B., Jiang, J., Queen, W.L., Hudson, M.R.
& Yaghi, O.M. 2014. Water adsorption in porous metal-organic frameworks and
related materials. Journal of the American Chemical Society 136(11):
4369-4381.
Genna, D.T., Pfund, L.Y., Samblanet, D.C., Wong-Foy, A.G., Matzger, A.J.
& Sanford, M.S. 2016. Rhodium hydrogenation catalysts supported in metal
organic frameworks: Influence of the framework on catalytic activity and
selectivity. ACS Catalysis 6(6): 3569-3574.
Guenther, E. 1982. The Essential
Oils: Individual Essential Oils of the Plant Families Gramineae, Lauraceae,
Burseraceae, Myrtaceae, Umbelliferae and Geraniaceae. Krieger, R.E.
Publishing Company. p. 507.
Hadjiivanov, K.I., Panayotov, D.A., Mihaylov, M.Y., Ivanova, E.Z.,
Chakarova, K.K., Andonova, S.M. & Drenchev, N.L. 2021. Power of infrared and
raman spectroscopies to characterize metal-organic frameworks and investigate
their interaction with guest molecules. Chemical Reviews 121: 1286-1424.
Hanif, Q.A., Nugraha, R.E. & Lestari, W.W. 2018. Kajian metal-organic
frameworks (MOFs) sebagai material baru pengantar obat. ALCHEMY Jurnal
Penelitian Kimia 14(1): 16.
Horcajada, P., Surblé, S., Serre, C., Hong, D.Y., Seo, Y.K., Chang, J.S.,
Grenèche, J.M., Margiolaki, I. & Férey, G. 2007. Synthesis and catalytic
properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chemical
Communications 100(27): 2820-2822.
Hwang, Y.K., San Chang, J., Hong, D.Y., Hwang, D.W., Lee, U.H., Cho, K.H.,
Valekar, A.H. & Lee, S.K. 2017. Zirconium-based metal-organic frameworks as
catalyst for transfer hydrogenation.
https://patents.google.com/patent/US10195592B2/en. Accessed on 9 November 2017.
Ide, M.S., Hao, B., Neurock, M. & Davis, R.J. 2012. Mechanistic
insights on the hydrogenation of α,β-unsaturated ketones and
aldehydes to unsaturated alcohols over metal catalysts. ACS Catalysis 2(4): 671-683.
Kandiah, M., Nilsen, M.H., Usseglio, S., Jakobsen, S., Olsbye, U., Tilset,
M., Larabi, C., Quadrelli, E.A., Bonino, F. & Lillerud, K.P. 2010.
Synthesis and stability of tagged UiO-66 Zr-MOFs. Chemistry of Materials 22(24): 6632-6640.
Kim, M. & Cohen, S.M. 2012. Discovery, development, and
functionalization of Zr(Iv)-based metal-organic frameworks. CrystEngComm 14(120): 4096-4104.
Larasati, I., Winarni, D., Putri, F.R., Hanif, Q.A. & Lestari, W.W.
2017. Synthesis of metal-organic frameworks based on Zr4+ and
benzene 1,3,5-tricarboxylate linker as heterogeneous catalyst in the
esterification reaction of palmitic acid. IOP Conference Series: Materials
Science and Engineering 214: 012006.
Le, T.D., Nguyen, K.D., Nguyen, V.T., Truong, T. & Phan, N.T.S. 2016.
1,5-benzodiazepine synthesis via cyclocondensation of 1,2-diamines with ketones
using iron-based metal-organic framework MOF-235 as an efficient heterogeneous
catalyst. Journal of Catalysis 333: 94-101.
Lestari, W.W., Prajanira, L.B., Putra, R., Purnawan, C., Prihadiyono, F.I.
& Arrozi, U.S.F. 2021. Green-synthesized MIL-100(Fe) modified with
palladium as a selective catalyst in the hydrogenation of citronellal to
citronellol. Materials Research Express 8(April 1): 045504.
Li, Y.Z., Wang, H.H., Yang, H.Y., Hou, L., Wang, Y.Y. & Zhu, Z. 2018.
An uncommon carboxyl-decorated metal–organic framework with selective gas
adsorption and catalytic conversion of CO2. Chemistry - A
European Journal 24(4): 865-871.
Liang, W., Chevreau, H., Ragon, F., Southon, P.D., Peterson, V.K. &
D’Alessandro, D.M. 2014. Tuning pore size in a zirconium-tricarboxylate
metal-organic framework. Crystal Engineering Community 16: 6530-6533.
Mäki-Arvela, P., Kumar, N., Nieminen, V., Sjöholm, R., Salmi, T. & Murzin, D.Y. 2004.
Cyclization of citronellal over zeolites and mesoporous materials for
production of isopulegol. Journal of Catalysis 225(1): 155-169.
Mertens, P., Verpoort, F., Parvulescu, A.N. & De Vos, D. 2006.
Pt/H-beta zeolites as productive bifunctional catalysts for the one-step
citronellal-to-menthol conversion. Journal of Catalysis 243(1): 7-13.
Milone, C., Gangemi, C., Ingoglia, R., Neri, G. & Galvagno, S. 1999.
Role of the support in the hydrogenation of citronellal on ruthenium catalysts. Applied Catalysis A: General 184: 89-94.
Morris, W., Volosskiy, B., Demir, S., Gándara, F., McGrier, P.L.,
Furukawa, H., Cascio, D., Stoddart, J.F. & Yaghi, O.M. 2012. Synthesis,
structure, and metalation of two new highly porous zirconium metal-organic
frameworks. Inorganic Chemistry 51(12): 6443-6445.
Müller, P., Wolf, P. & Hermans, I. 2016. Insights into the complexity
of heterogeneous liquid-phase catalysis: Case study on the cyclization of
citronellal. ACS Catalysis 6(5): 2760-2769.
Nagai, D., Nishibori, M., Itoh, T., Kawabe, T., Sato, K. & Shin, W.
2015. Ppm level methane detection using micro-thermoelectric gas sensors with
Pd/Al2O3 combustion catalyst films. Sensors and
Actuators B: Chemical 206: 488-494.
Nie, Y., Niah, W., Jaenicke, S. & Chuah, G.K. 2007. A tandem
cyclization and hydrogenation of (±)-citronellal to menthol over bifunctional
Ni/Zr-beta and mixed Zr-beta and Ni/MCM-41. Journal of Catalysis 248:
1-10.
O’Brien, K.E. & Wicht, D.K. 2008. A greener organic chemistry
experiment: Reduction of citronellal to citronellol using
poly(methylhydro)siloxane. Green Chemistry Letters and Reviews 1(3):
149-154.
Park, Y.K., Choi, S.B., Nam, H.J., Jung, D.Y., Ahn, H.C., Choi, K.,
Furukawa, H. & Kim, J. 2010. Catalytic nickel nanoparticles embedded in a
mesoporous metal-organic framework. Chemical Communications 46(18):
3086-3088.
Plessers, E., Fu, G., Tan, C.Y.X., De Vos, D.E. & Roeffaers, M.B.J.
2016. Zr-based MOF-808 as meerwein–ponndorf–verley reduction catalyst for
challenging carbonyl compounds. Catalysts 6(7): 104.
Putra, R., Lestari, W.W., Wibowo, F.R. & Susanto, B.H. 2018.
Fe/Indonesian natural zeolite as hydrodeoxygenation catalyst in green diesel
production from palm oil. Bulletin of Chemical Reaction Engineering &
Catalysis 13(2): 245-255.
Qneibi, M., Jaradat, N. & Emwas, N. 2019. Effect of geraniol and
citronellol essential oils on the biophysical gating properties of AMPA
receptors. Applied Sciences (Switzerland) 9(21): 4693.
Qu, P.F., Chen, J.G., Song, Y.H., Liu, Z.T., Liu, Z.W., Li, Y., Lu, J.
& Jiang, J. 2015. Effect of Fe(III) on hydrogenation of citral over Pt
supported multiwalled carbon nanotube. Catalysis Communications 68(3):
105-109.
Reinsch, H., Bueken, B., Vermoortele, F., Stassen, I., Lieb, A., Lillerud,
K.P. & De Vos, D. 2015. Green synthesis of zirconium-MOFs. CrystEngComm 17(22): 4070-4074.
Ren, J., Segakweng, T., Langmi, H.W., Musyoka, N.M., North, B.C., Mathe,
M. & Bessarabov, D. 2014. Microwave-assisted modulated synthesis of
zirconium-based metal-organic framework (Zr-MOF) for hydrogen storage
applications. International Journal of Materials Research 105(5):
516-519.
Silverstein, R.M., Webster, F.X. & Kiemle, D.J. 2005. Spectrometric
Identification of Organic Compounds. 7th
ed. New York: John Wiley & Sons.
Simsek, E.B., Özdemir, E. & Beker, U. 2013. Zeolite supported mono-
and bimetallic oxides: Promising adsorbents for removal of As(V) in aqueous
solutions. Chemical Engineering Journal 220: 402-411.
Stassen, I., Styles, M., Van Assche, T., Campagnol, N., Fransaer, J.,
Denayer, J., Tan, J.C., Falcaro, P., De Vos, D. & Ameloot, R. 2015.
Electrochemical film deposition of the zirconium metal-organic framework UiO-66
and application in a miniaturized sorbent trap. Chemistry of Materials 27(5): 1801-1807.
Sudiyarmanto, S., Adilina, I.B., Aditya, R.R., Sukandar, D. &
Tursiloadi, S. 2020. Catalytic conversion of citronellal to citronellol over
skeletal Ni catalyst. Journal of Physics: Conference Series 1442(1):
012047.
Užarević, K., Wang, T.C., Moon, S.Y., Fidelli, A.M., Hupp, J.T.,
Farha, O.K. & Friščić, T. 2016. Mechanochemical and solvent-free
assembly of zirconium-based metal-organic frameworks. Chemical
Communications 52(10): 2133-2136.
Xu, J., Liu, J., Li, Z., Wang, X. & Wang, Z. 2019. Synthesis,
structure and properties of Pd@MOF-808. Journal of Materials Science 54(19): 12911-12924.
Yongzhong, Z., Yuntong, N., Jaenicke, S. & Chuah, G.K. 2005.
Cyclisation of citronellal over zirconium zeolite beta - A highly
diastereoselective catalyst to (±)-isopulegol. Journal of Catalysis 229(2): 404-413.
Yu, W., Liu, H., Liu, M. & Liu, Z. 2000. Selective hydrogenation of
citronellal to citronellol over polymer-stabilized noble metal colloids. Reactive
and Functional Polymers 44(1): 21-29.
Yuan, Q., Zhang, D., Van Haandel, L., Ye, F., Xue, T., Hensen, E.J.M.
& Guan, Y. 2015. Selective liquid phase hydrogenation of furfural to
furfuryl alcohol by Ru/Zr-MOFs. Journal of Molecular Catalysis A: Chemical 406: 58-64.
Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., Sun, Y.,
Qin, J., Yang, X., Zhang, P., Wang, Q., Zou, L., Zhang, Y., Zhang, L., Fang,
Y., Li, J. & Zhou, H-C. 2018. Stable metal–organic frameworks: Design,
synthesis, and applications. Advanced Materials 30(37): 1704303.
Zhao, H., Song, H. & Chou, L. 2012. Nickel nanoparticles supported on
MOF-5: Synthesis and catalytic hydrogenation properties. Inorganic Chemistry
Communications 15: 261-265.
Zhao, Z.W., Zhou, X., Liu, Y.N., Shen, C.C., Yuan, C.Z., Jiang, Y.F.,
Zhao, S.J., Ma, L.B., Cheang, T.Y. & Xu, A.W. 2018. Ultrasmall Ni
nanoparticles embedded in Zr-based MOFs provide high selectivity for CO2 hydrogenation to methane at low temperatures. Catalysis Science and
Technology 8(12): 3160-3165.
Zhen, W., Gao, F., Tian, B., Ding, P., Deng, Y., Li, Z., Gao, H. & Lu,
G. 2017. Enhancing activity for carbon dioxide methanation by encapsulating
(1 1 1) facet Ni particle in metal–organic frameworks at low
temperature. Journal of Catalysis 348: 200-211.
Zong, M., Fan, C., Yang, X. & Wang, D. 2021. Promoting Ni-MOF with
metallic Ni for highly-efficient p-nitrophenol hydrogenation. Molecular
Catalysis 509(March): 111609.
*Corresponding author; email: witri@mipa.uns.ac.id
|