Sains Malaysiana 52(1)(2023): 71-81
http://doi.org/10.17576/jsm-2023-5201-06
The Potential of Several Wild Invasive Fish Species
as Fish-Based Organic Fertilizers on the Growth of Two Common Vegetables in
Malaysia
(Potensi Beberapa Spesies Ikan Invasif Liar sebagai
Baja Organik Berasaskan Ikan ke atas Pertumbuhan Dua Sayuran Umum di Malaysia)
JENNIFER
ANAK FABIAN UNGGANG, MOHD. NIZAM BAKAR & AHMAD BUKHARY AHMAD KHAIR*
School of Biological
Sciences, G08 Building, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
Received:
28 June 2021/Accepted: 21 April 2022
Abstract
Three
common invasive fish species in Malaysia, Peacock Bass (Cichla ocellaris),
Nile Tilapia (Oreochromis niloticus) and Algae Suckermouth Catfish (Hypostomus
plecostomus) were assessed for their efficacy as potential fish powder
fertilizers. These invasive fish species were known to disturb the stability of
lentic and lotic aquatic ecosystems in Malaysia, especially O. niloticus and H. plecostomus, altering aquatic habitats and food webs to be
unsuitable for survival of indigenous fish species, while C. ocellaris becoming active aggressive predators on indigenous fish species, overall
reducing indigenous fish species diversity. Plant primary macronutrient traces
showed that C. ocellaris fish powder fertilizer recorded the highest
Nitrogen (N) element percentage (15.81 ± 0.43 N %w/w) and trace Potassium (K)
element (28,909.15 ± 32.56 K mg/kg), while H. plecostomus fish powder
fertilizer recorded the highest trace Phosphorus (P) element (30,562.09 ±
197.11 P mg/kg). Plant secondary macronutrient traces showed that C.
ocellaris fish powder fertilizer recorded the highest trace Magnesium (Mg)
element (1496.66 ± 3.99 Mg mg/kg), while H. plecostomus fish powder
fertilizer recorded the highest trace Calcium (Ca) element (6984.48 ± 26.20 Ca
mg/kg). Two vegetable species tested for their growths, the water spinach (Ipomoea
aquatica) and the spinach (Spinacia oleracea), showed that C.
ocellaris fish powder fertilizer recorded the highest heights (263.74 ± 12.29 mm, 166.35 ± 9.46
mm), the widest leaf width (14.82 ± 0.66 mm, 21.08 ± 1.53 mm), and the widest
stalk width (3.06 ± 0.10 mm, 2.89 ± 0.17 mm), respectively, comparable to the NPK 15:15:15 compound
fertilizer, followed by H. plecostomus and O. niloticus fish
powder fertilizers. C. ocellaris as predatory invasive fish species with the highest Mg concentration and
moderate Ca concentrations, was especially suitable for the growth of both
semi-aquatic and terrestrial vegetables grown on low Mg concentration soils.
Keywords: Cichla ocellaris; Hypostomus plecostomus; Oreochromis niloticus; organic
fertilizer; vegetables
Abstrak
Tiga
spesies ikan invasif umum di Malaysia, Ikan Raja (Cichla ocellaris),
Tilapia Nil (Oreochromis niloticus) dan Ikan Bandaraya (Hypostomus
plecostomus) dinilai terhadap keberkesanannya sebagai baja serbuk ikan yang
berpotensi. Ikan invasif ini diketahui mengganggu kestabilan ekosistem akuatik
lentik dan lotik di Malaysia, lebih-lebih lagi O. niloticus dan H. plecostomus,
mengubah habitat akuatik dan siratan makanan menjadi tidak sesuai kepada
kemandirian spesies ikan asli, manakala C. ocellaris menjadi pemangsa
aktif agresif ke atas spesies ikan asli, secara keseluruhannya menurunkan
kepelbagaian spesies ikan asli. Surihan makronutrien tumbuhan primer
menunjukkan baja serbuk ikan C. ocellaris merekodkan peratusan unsur
Nitrogen (N) (15.81 ± 0.43 N %w/w) dan surihan unsur Kalium (K) (28,909.15 ±
32.56 K mg/kg) tertinggi, manakala baja serbuk ikan H. plecostomus merekodkan surihan unsur Fosforus (P) tertinggi (30,562.09 ± 197.11 P mg/kg).
Surihan makronutrien tumbuhan sekunder menunjukkan baja serbuk ikan C.
ocellaris merekodkan surihan unsur Magnesium (Mg) tertinggi (1496.66 ± 3.99
Mg mg/kg), manakala baja serbuk ikan H. plecostomus merekodkan surihan
unsur Kalsium (Ca) tertinggi (6984.48 ± 26.20 Ca mg/kg). Dua spesies sayuran
yang diuji dari segi pertumbuhan iaitu kangkung (Ipomoea aquatica) dan
bayam (Spinacia oleracea), masing-masing menunjukkan bahawa baja
serbuk ikan C. ocellaris merekodkan ketinggian tertinggi (263.74 ± 12.2 mm; 166.35 ± 9.46 mm), lebar
daun yang paling besar (14.82
± 0.66 mm; 21.08 ±
1.53 mm) dan batang yang paling tebal (3.06 ± 0.10 mm; 2.89 ± 0.17 mm), sebanding dengan baja
sebatian NPK 15:15:15, diikuti oleh baja serbuk ikan H. plecostomus dan O.
niloticus. C.
ocellaris sebagai ikan invasif pemangsa dengan kepekatan tertinggi Mg dan kepekatan Ca
sederhana, sesuai untuk pertumbuhan sayuran separa akuatik dan daratan yang
ditanam pada tanah yang rendah kepekatan Mg.
Kata kunci: Baja organik; Cichla ocellaris; Hypostomus plecostomus; Oreochromis niloticus; sayuran
REFERENCES
Amundsen,
P.A., Siwertsson, A., Primicerio, R. & Bohn, T. 2009. Long-term responses
of zooplankton to invasion by a planktivorous fish in a subarctic watercourse. Freshwater
Biology 54: 24-34.
Aranganathan,
L. & Radhika Rajasree, S.R. 2016. Bioconversion of marine trash fish (MTF)
to organic liquid fertilizer for effective solid waste management and its
efficacy on tomato growth. Management of Environmental Quality: An
International Journal 27(1): 93-103.
Argüello, G. 2020.
Environmentally sound management of ship wastes: Challenges and opportunities
for European ports. Journal of Shipping and Trade 5: 12.
Bedarf, A.T., McKaye, K.R., Van Den Berghe, E.P., Perez, L.J.L.
& Secor, D.H. 2001. Initial six-year expansion of an introduced piscivorous
fish in a tropical Central American lake. Biological Invasions 3:
391-404.
Benlloch-González,
M., Romera, J., Cristescu, S., Harren, F., Fournier, J.M. & Benlloch, M.
2010. K+ starvation inhibits water-stress-induced stomatal closure
via ethylene synthesis in sunflower plants. Journal of Experimental Botany 61(4): 1139-1145. doi:10.1093/jxb/erp379
Bouska,
W.W., Glover, D.C., Trushenski, J.T., Secchi, S., Garvey, J.E., MacNamara, R.,
Coulter, D.P., Coulter, A.A., Irons, K. & Wieland, A. 2020.
Geographic-scale harvest program to promote invasivorism of big-headed carps. MDPI
Fish Journal 5(29): doi.10.3390/fishes5030029
Canonico,
G.C., Arthington, A., McCrary, J.K. & Thieme, M.L. 2005. The effects of
introducted tilapia on native biodiversity. Aquatic Conservation: Marine and
Freshwater Ecosystems 15: 463-483.
Casal,
C.M.V. 2006. Global documentations of fish introduction: the growing crisis and
recommendations for action. Biological Invasions 8: 3-11.
Chen,
Y., Yu, M., Zhu, Z., Zhang, L. & Guo, Q. 2013. Optimisation of potassium
chloride nutrition for proper growth, physiological development, and bioactive
component production in Prunella vulgaris, L. PLoS ONE 8(7):
e66259. doi.10.1371/journal.pone.0066259
Chigira,
M., Zainab, M., Sian, L.C. & Ibrahim, K. 2011. Landslides in weathered
granitic rocks in Japan and Malaysia. Bulletin of the Geological Society of
Malaysia 57: 1-6.
Daskalov,
G.M. 2002. Overfishing drives a trophic cascade in the Black Sea. Marine
Ecology Progress Series 225: 53-63.
Daskalov,
G.M., Grishin, A.N., Rodionov, S. & Mihneva, V. 2007. Trophic cascades
triggered by overfishing reveal possible mechanisms of ecosystem regime shift. Proceedings
of the National Academy of Sciences of the United States of America 104(25):
10518-10523.
Erkan, N., Selcuk, A. & Ozden, O. 2010. Amino
acid and vitamin composition of raw and cooked horse mackerel. Food
Analytical Methods 3: 269-275.
Food and Agriculture Organization of the United
Nations (FAO). 2010. Introduced Species Facts Sheets. Fisheries and
Aquaculture Department. http://www.fao.org/fishery/introsp/9144/en. Accessed
on 7 March 2006.
Gargallo-Garriga,
A., Preece, C., Sardans, J., Oravec, M., Urban, O. & Peñuelas, J. 2018.
Root exudate metabolomes change under drought and show limited capacity for
recovery. Nature - Scientific Reports 8: 12696. doi.10.1038/s41598-018-30150-0
Gaygusuz,
O., Tarkan, A.S. & Gaygusuz, C.G. 2007. Changes in the fish community of
the Ömerli Reservior (Turkey) following the introduction of non-native gibel
carp Carassius gibelio (Bloch 1782) and other human impacts. Aquatic
Invasions 2: 117-120.
Guo,
W., Nazim, H., Liang, Z. & Yang, D. 2016. Magnesium deficiency in plants:
An urgent problem. The Crop Journal 4: 83-91. doi.org/10.1016/j.cj.2015.11.003
Haubrock, P.J., Criado, A., Monteoliva, A.P., Monteoliva, J.A.,
Santiago, T., Inghilesi, A.F. & Tricarico, E. 2018. Control and eradication
efforts of aquatic alien fish species in Lake Caicedo Yuso-Arreo. Management
of Biological Invasions 9(3): 267-278.
Horn, S.J., Aspmo, S.I. & Eijsink, V.G. 2007. Evaluation of
different cod viscera fractions and their seasonal variation used in a growth
medium for lactic acid bacteria. Enzyme and Microbial Technology 40:
1328-1334.
Iongh, H.H.D. & Zon, J.C.J.V. 1993. Assessment of impact of
the introduction of exotic fish species in north-east Thailand. Aquaculture
and Fisheries Management 24: 279-289.
Johnson, L.E., Bossenbroek, J.M. & Kraft, C.E. 2006. Patterns
and pathways in the post-establishment spread of non-indigenous aquatic
species: The slowing invasion of North American inland lakes by the zebra
mussel. Biological Invasions 8: 475-489.
Khairul Adha, A.R. 2012. Diversity, ecology, and distribution of
non-indigenous freshwater fish in Malaysia. Ph.D. Thesis, Universiti Putra
Malaysia (Unpublished).
Khairul Adha, A.R., Yuzine, E. & Aziz, A. 2013. The influence
of alien fish species on native fish community structure in Malaysian waters. Kuroshio
Science 7(1): 81-93.
Kong, T.B. 1994. Engineering properties of
granitic soils and rocks of Penang Island, Malaysia. Bulletin of the Geological Society
of Malaysia 35: 69-77.
Latimer, G.W. 2016. Official Methods of
Analysis of AOAC International. 20th ed. Gaithersburg, MD, USA: AOAC
International. p. 3172.
Lodge, D.M., Stein, R.A., Brown, K.M., Covich, A.P., Bronmark, C.
& Garvey, J.E. 1998. Predicting impact of freshwater exotic species on
native biodiversity: Challenges in spatial scaling. Australian Journal of
Ecology 23: 53-67.
Malaysian Agricultural Digest. 2013. Chapter 16: Agricultural Chemicals. pp.
155-163.
McNeill, A., Blanc, M. & Rochers, K.D. 2008. From sea to soil:
Adding value to fish waste. SPC Fisheries Newsletter 126: 31-36.
Mulder, E.G. 1956. Nitrogen-magnesium relationships in crop
plants. Plant and Soil 7: 341-376.
Naveed, M., Brown, L.K., Raffan, A.C., George, T.S., Bengough,
A.G., Roose, T., Sinclair, I., Koebernick, N., Cooper, L., Hackett, C.A. &
Hallett, P.D. 2017. Plant exudates may stabilize or weaken soil depending on
species, origin, and time. European Journal of Soil Sciences 68(6):
806-816. doi.10.1111/ejss.12487.
Nurul Ulfah, K., Mohd Farid, M.A.L. & Adzemi, M.A. 2015. The
effectiveness of fish selage as organic fertilizer on post-harvest quality of
Pak Choy (Brassica rapa L. subsp. chinensis). European
International Journal of Science and Technology 4(5): 163-174.
Park, S., Moon, Y. & Waterland, N.L. 2020. Treatment with
calcium chloride enhances water deficit stress tolerance in Viola (Viola
cornuta). Horticulture Science 55(6): 882-887.
Preece, C., Farré-Armengol, G., Llusià, J. & Peñuelas, J.
2018. Thirsty tree roots exude more carbon. Tree Physiology 38: 690-695. doi:10.1093/treephys/tpx163
Pullin, R.S., Palmares, M.L., Casal, C.V., Dey, M.M. & Pauly,
D. 1997. Environmental effects of tilapias. In Proceeding of the Fourth
International Symposium on Tilapia in Aquaculture, edited by Fitzsimmons,
K. Northeast Regional Agricultural Engineering Service, USA. pp. 554-572.
Ridolfi, M., Roupsard, O., Garrec, J.P. & Dreyer, E. 1996.
Effects of a calcium deficiency on stomatal conductance and photosynthetic
activity of Quercus robur seedlings grown on nutrient solution. Annals
of Forest Science 53(2-3): 325-335.
Ruiz, L.P., Atkinson, C.J. & Mansfield, T.A. 1993. Calcium in
the xylem and its influence on the behaviour of stomata. Philosophical
Transactions of the Royal Society B 341: 67-74.
Sala, O.E., Chapin, F.S. & Armesto, J.J. 2000. Global
biodiversity scenarios for the year 2100. Science 287: 1770-1774.
Senbayram, M., Gransee, A., Wahle, V. & Thiel, H. 2015. Role
of magnesium fertiliser in agriculture: Plant-soil continuum. Crop and
Pasture Science 66: 1219-1229. doi.org/10.1071/CP15104
Susanto, I.R. 2015. Sustainable organic farming for environmental
health: A social development model. International Journal of Scientific and
Technology Research 4(5): 196-211.
Tiwari, N. & Chandra, V. 1985. Water spinach - its varieties
and cultivation. Indian Horticulture 30(2): 23-24.
Tränkner, M., Jákli, B., Tavakol, E., Geilfus, C-M., Cakmak, I.,
Dittert, K. & Senbayram, M. 2016. Magnesium deficiency decreases biomass
water-use efficiency and increases leaf water-use efficiency and oxidative
stress in barley plants. Plant Soil 406: 409-423. doi.10.1007/s11104-016-2886-1
Vörösmarty, C.J.,
McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P., Glidden,
S., Bunn, S.E., Sullivan, C.A., Liermann, C.R. & Davies, P.M. 2010. Global
threats to human water security and river biodiversity. Nature 467(7315): 555-561.
Weih, M., Liu, H.,
Colombi, T., Keller, T., Jäck, O., Vallenback, P. & Westerbergh, A. 2021. Nature
- Scientific Reports 11: 9012. doi.org/10.1038/s41598-021-88588-8
Welcomme, R.L.
1984. International transfers of inland fish species. In Distribution, Biology,
and Management of Exotic Fishes, edited by Courtenay Jr., W.R. &
Stauffer Jr., J.R. Baltimore: Johns Hopkins University Press. pp. 22-40.
Wittenberg, R.
& Cock, M.J.W. 2001. IAS: A Toolkit of Best Prevention and Management
Practices. Wallingford: CAB International. p. 228.
Yousaf, M.,
Bashir, S., Raza, H., Shah, A.N., Iqbal, J., Arif, M., Bukhari, M.A., Muhammad,
S., Hashim, S., Alkahtani, J., Alwahibi, M.S. & Hu, C. 2021. Role of
nitrogen and magnesium for growth, yield, and nutritional quality of radish. Saudi
Journal of Biological Sciences 28: 3021-3030. doi.org/10.1016/j.sjbs.2021.02.043
*Corresponding author; email: abukhary@usm.my
|