Sains Malaysiana 52(2)(2023): 441-465

http://doi.org/10.17576/jsm-2023-5202-10

 

Artocarpus heterophyllus Lam. Stem Bark Inhibits Melanogenesis through Regulation of ROS, cAMP, and MAPK Pathways

(Artocarpus heterophyllus Lam. Kulit Batang Merencat Melanogenesis melalui Pengawalaturan Laluan ROS, cAMP dan MAPK)

 

HAZWANI MAT SAAD1, CHUN HOE TAN2, SUGUMARAN MANICKAM3, SIEW HUAH LIM4 & KAE SHIN SIM1,*

 

1Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, 50603 Kuala Lumpur, Federal Territory, Malaysia

2Department of Biotechnology, Faculty of Applied Science, Lincoln University, 47301 Petaling Jaya, Selangor Darul Ehsan, Malaysia

3Rimba Ilmu Botanical Garden, UM Sustainability Development Centre, Level 6, Research and Innovation Management Complex, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, 50603 Kuala Lumpur, Federal Territory, Malaysia

4Department of Chemistry, Faculty of Science, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 17 August 2022/Accepted: 23 November 2022

 

Abstract

Natural-based skin-lightening cosmeceutical products are attracting high popularity nowadays due to their relatively high bioavailability upon application. Artocarpus species have been highlighted with such potential, and our previous studies have reported that Artocarpus heterophyllusLam. stem bark extract exhibited a potent anti-melanogenic activity by reducing melanin content and inhibiting cellular tyrosinase activity in B16F10 melanoma cells. Hence, this study aimed to identify the bioactive fraction from A. heterophyllus Lam. stem bark and determine its anti-melanogenic mechanisms in B16F10 melanoma cells. Our results showed that a fraction (H-3) demonstrated the most pronounced anti-melanogenic effect at 12.00 µg/mL by reducing melanin content to 22.86 ± 2.90% and inhibiting cellular tyrosinase activity at treatment concentration 33-fold lower than kojic acid, without being cytotoxic against B16F10 melanoma cells. Moreover, treatment with H-3 for 24 and 48 h substantially scavenged intracellular reactive oxygen species (ROS) of hydrogen peroxide-challenged B16F10 melanoma cells by 1.8 and 4.4%, respectively. Based on the microarray profiling and qPCR analysis, H-3 downregulated Creb3l1, Creb3l2, Creb3l3, Mitf, Tyr, Tyrp1, and Dct genes in B16F10 melanoma cells, whereas the expression of Map3k20, Mapk14 (p38), and Foxo3 genes was markedly increased. Altogether, these results demonstrated that H-3 exhibited its anti-melanogenic activity in B16F10 melanoma cells through scavenging ROS and concurrent inhibition of the cAMP and activation of the p38/MAPK signaling pathways. These findings indicate that H-3 has the potential to be used as a skin lightening cosmeceutical agent in the treatment of skin hyperpigmentation.

 

Keywords: B16F10 melanoma cells; melanin; microarray profiling; microphthalmia-associated transcription factor; tyrosinase

 

Abstrak

Produk kosmetik pencerah kulit berasaskan sumber semula jadi mempunyai kepopularan yang tinggi pada masa kini kerana bioketersediaannya yang tinggi apabila digunakan. Spesies Artocarpus telah diserlahkan dengan potensi sedemikian dan kajian kami yang terdahulu telah melaporkan bahawa ekstrak kulit batang Artocarpus heterophyllus Lam. menunjukkan aktiviti anti-melanogenik yang kuat dengan menurunkan kandungan melanin serta menghalang aktiviti tirosinase sel pada sel melanoma B16F10. Oleh itu, kajian ini bertujuan untuk mengenal pasti fraksi bioaktif daripada kulit batang A. heterophyllus Lam. dan menentukan mekanisme anti-melanogenesis dalam sel melanoma B16F10. Hasil menunjukkan bahawa fraksi H-3 menunjukkan kesan anti-melanogenik yang ketara pada 12.00 µg/mL dengan menurunkan kandungan melanin kepada 22.86 ± 2.90% serta menghalang aktiviti tirosinase sel pada kepekatan 33 kali ganda lebih rendah berbanding asid kojik tanpa kesan ketoksikan pada sel melanoma B16F10. Tambahan pula, rawatan dengan H-3 selama 24 dan 48 jam dapat menghapuskan spesies oksigen reaktif (ROS) intrasel daripada sel melanoma B16F10 yang dicabar dengan H2O2 dengan ketara masing-masing sebanyak 1.8 dan 4.4%. Berdasarkan profil jujukan mikroarai dan analisis qPCR, H-3 menurunkan pengekspresan gen Creb3l1, Creb3l2, Creb3l3, Mitf, Tyr, Tyrp1 dan Dct dalam sel B16F10, manakala pengekspresan gen Map3k20, Mapk14 (p38), dan Foxo3 telah meningkat dengan ketara. Secara amnya, keputusan ini menunjukkan bahawa H-3 menunjukkan aktiviti anti-melanogenesis dalam sel melanoma B16F10 dengan mengikis ROS intrasel dan pada masa yang sama menghalang laluan isyarat cAMP serta mengaktifkan isyarat laluan p38/MAPK. Penemuan ini menunjukkan bahawa H-3 berpotensi untuk digunakan sebagai agen kosmetik pencerah kulit dalam rawatan hiperpigmentasi kulit.

 

Kata kunci: Faktor transkripsi berkaitan mikroftalmia; melanin; profil mikroatur; sel melanoma B16F10; tirosinase

 

REFERENCES

Alam, M.B., Ahmed, A., Motin, M.A., Kim, S. & Lee, S.H. 2018. Attenuation of melanogenesis by Nymphaea nouchali (Burm. f) flower extract through the regulation of cAMP/CREB/MAPKs/MITF and proteasomal degradation of tyrosinase. Scientific Reports 8(1): 13928.

Alam, M.B., Bajpai, V.K., Lee, J., Zhao, P., Byeon, J.H., Ra, J.S., Majumder, R., Lee, J.S., Yoon, J.I., Rather, I.A., Park, Y.H., Kim, K., Na, M. & Lee, S.H. 2017. Inhibition of melanogenesis by jineol from Scolopendra subspinipes mutilans via MAP-Kinase mediated MITF downregulation and the proteasomal degradation of tyrosinase. Scientific Reports 7(1): 45858.

Arung, E.T., Shimizu, K. & Kondo, R. 2011. Artocarpus plants as a potential source of skin whitening agents. Natural Product Communications 6(9): 1397-1402.

Arung, E.T., Shimizu, K. & Kondo, R. 2006. Inhibitory effect of artocarpanone from Artocarpus heterophyllus on melanin biosynthesis. Biological and Pharmaceutical Bulletin 29(9): 1966-1969.

Bellei, B., Maresca, V., Flori, E., Pitisci, A., Larue, L. & Picardo, M. 2010. p38 regulates pigmentation via proteasomal degradation of tyrosinase. Journal of Biological Chemistry 285(10): 7288-7299.

Bino, S.D., Duval, C. & Bernerd, F. 2018. Clinical and biological characterization of skin pigmentation diversity and its consequences on UV impact. International Journal of Molecular Sciences 19(9): 2668.

Bult, C.J., Blake, J.A., Smith, C.L., Kadin, J.A., Richardson, J.E. & The Mouse Genome Database Group. 2019. Mouse genome database (MGD) 2019. Nucleic Acids Research 47(D1): D801-D806.

Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L., Vandesompele, J. & Wittwer, C.T. 2009. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry 55(4): 611-622.

Carlson, J.A., Linette, G.P., Aplin, A., Ng, B. & Slominski, A. 2007. Melanocyte receptors: Clinical implications and therapeutic relevance. Dermatologic Clinics 25(4): 541-557.

Chaikul, P., Lourith, N. & Kanlayavattanakul, M. 2017. Antimelanogenesis and cellular antioxidant activities of rubber (Hevea brasiliensis) seed oil for cosmetics. Industrial Crops and Products 108: 56-62.

Chiang, H.M., Chien, Y.C., Wu, C.H., Kuo, Y.H., Wu, W.C., Pan, Y.Y., Su, Y.H. & Wen, K.C. 2014. Hydroalcoholic extract of Rhodiola rosea L. (Crassulaceae) and its hydrolysate inhibit melanogenesis in B16F0 cells by regulating the CREB/MITF/tyrosinase pathway. Food and Chemical Toxicology 65: 129-139.

Fu, Y.H., Guo, J.M., Xie, Y.T., Yu, X.M., Su, Q.T., Qiang, L., Kong, L.Y. & Liu, Y.P. 2020.  Prenylated chromones from the fruits of Artocarpus heterophyllus and their potential anti-HIV-1 activities. Journal of Agricultural and Food Chemistry 68(7): 2024-2030.

Glick, D., Barth, S. & Macleod, K.F. 2010. Autophagy: Cellular and molecular mechanisms. The Journal of Pathology 221(1): 3-12.

Gotoh, I., Adachi, M. & Nishida, E. 2001. Identification and characterization of a novel MAP kinase kinase kinase, MLTK. Journal of Biological Chemistry 276(6): 4276-4286.

Greenwood, M.P., Greenwood, M., Gillard, B.T., Chitra Devi, R. & Murphy, D. 2017. Regulation of cAMP responsive element binding protein 3-Like 1 (Creb3l1) expression by orphan nuclear receptor Nr4a1. Frontiers in Molecular Neuroscience 10: 413.

Guo, Y.Q., Tang, G.H., Lou, L.L., Li, W., Zhang, B., Liu, B. & Yin, S. 2018. Prenylated flavonoids as potent phosphodiesterase-4 inhibitors from Morus alba: Isolation, modification, and structure-activity relationship study. European Journal of Medicinal Chemistry 144: 758-766.

Hsiao, J.J. & Fisher, D.E. 2014. The roles of microphthalmia-associated transcription factor and pigmentation in melanoma. Archives of Biochemistry and Biophysics 563: 28-34.

Hwang, Y., Lee, J., Jung, H.J., Ullah, S., Ko, J., Jeong, Y., Park, Y.J., Kang, M.K., Yun, H., Kim, M.S., Chun, P., Chung, H.Y. & Moon, H.R. 2022. A novel class of potent anti-tyrosinase compounds with antioxidant activity, 2-(substituted phenyl)-5-(trifluoromethyl)benzo[d]thiazoles: in vitro and in silico insights. Antioxidants 11(7): 1375.

Jagtap, U. & Bapat, V. 2010. Artocarpus: A review of its traditional uses, phytochemistry and pharmacology. Journal of Ethnopharmacology 129(2): 142-166.

Jeong, D., Park, S.H., Kim, M.H., Lee, S., Cho, Y.K., Kim, Y.A., Park, B.J., Lee, J., Kang, H. & Cho, J.Y. 2020. Anti-melanogenic effects of ethanol extracts of the leaves and roots of Patrinia villosa (Thunb.) juss through their inhibition of CREB and induction of ERK and autophagy. Molecules 25(22): 5375.

Kanehisa, M. & Goto, S. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28(1): 27-30.

Kawakami, A. & Fisher, D.E. 2017. The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology. Laboratory Investigation 97(6): 649-656.

Keshet, Y. & Seger, R. 2010. The MAP kinase signaling cascades: A system of hundreds of components regulates a diverse array of physiological functions. In MAP Kinase Signaling Protocols. Methods in Molecular Biology (Methods and Protocols), edited by Seger, R. Totowa: Humana Press.

Kim, E.S., Park, S.J., Goh, M.J., Na, Y.J., Jo, D.S., Jo, Y.K., Shin, J.H., Choi, E.S., Lee, H.K., Kim, J.Y., Jeon, H.B., Kim, J.C. & Cho, D.H. 2014. Mitochondrial dynamics regulate melanogenesis through proteasomal degradation of MITF via ROS-ERK activation. Pigment Cell & Melanoma Research 27(6): 1051-1062.

Kim, J., Choi, H., Cho, E.G. & Lee, T.R. 2014. FoxO3a is an antimelanogenic factor that mediates antioxidant-induced depigmentation. Journal of Investigative Dermatology 134(5): 1378-1388.

Kim, J.Y., Kim, J., Ahn, Y., Lee, E.J., Hwang, S., Almurayshid, A., Park, K., Chung, H.J., Kim, H.J., Lee, S.H., Lee, M.S. & Oh, S.H. 2020. Autophagy induction can regulate skin pigmentation by causing melanosome degradation in keratinocytes and melanocytes. Pigment Cell and Melanoma Research 33(3): 403-415.

Ko, F.N., Cheng, Z.J., Lin, C.N. & Teng, C.M. 1998. Scavenger and antioxidant properties of prenylflavones isolated From Artocarpus heterophyllus. Free Radical Biology and Medicine 25(2): 160-168.

Ko, G.A., Shrestha, S. & Cho, S.K. 2018. Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3β signaling pathway. Nutrition Research and Practice 12(1): 3-12.

Ko, G.A., Kang, H.R., Moon, J.Y., Ediriweera, M.K., Eum, S., Bach, T.T. & Cho, S.K. 2019. Annona squamosa L. leaves inhibit alpha-melanocyte-stimulating hormone (α-MSH) stimulated melanogenesis via p38 signaling pathway in B16F10 melanoma cells. Journal of Cosmetic Dermatology 19(7): 1785-1792.

Ko, H.H., Chiang, Y.C., Tsai, M.H., Liang, C.J., Hsu, L.F., Li, S.Y., Wang, M.C., Yen, F.L. & Lee, C.W. 2014. Eupafolin, a skin whitening flavonoid isolated from Phyla nodiflora, downregulated melanogenesis: Role of MAPK and Akt pathways. Journal of Ethnopharmacology 151(1): 386-393.

Kumari, S., Thng, S.T.G., Verma, N.K. & Gautam, H.K. 2018. Melanogenesis inhibitors. Acta Dermato-Venereologica 98(9-10): 924-931.

Kwon, S.H., Choi, H.R., Kang, Y.A. & Park, K.C. 2017. Depigmenting effect of resveratrol is dependent on FOXO3a activation without SIRT1 activation. International Journal of Molecular Sciences 18(6): 1213.

Lee, C.C., Lin, C.N. & Jow, G.M. 2006. Cytotoxic and apoptotic effects of prenylflavonoid artonin B in human acute lymphoblastic leukemia cells. Acta Pharmacologica Sinica 27(9): 1165-1174.

Lee, J.O., Kim, E., Kim, J.H., Hong, Y.H., Kim, H.G., Jeong, D., Kim, J., Kim, S.H., Park, C., Seo, D.B., Son, Y.J., Han, S.Y. & Cho, J.Y. 2018. Antimelanogenesis and skin-protective activities of Panax ginseng calyx ethanol extract. Journal of Ginseng Research 42(3): 389-399.

Levy, C., Khaled, M. & Fisher, D.E. 2006. MITF: Master regulator of melanocyte development and melanoma oncogene. Trends in Molecular Medicine 12(9): 406-414.

Li, J., Lin, Z., Tang, X., Liu, G., Chen, Y., Zhai, X., Huang, Q. & Cao, Y. 2020. Oxyresveratrol extracted from Artocarpus heterophyllus Lam. inhibits tyrosinase and age pigments in vitro and in vivo. Food and Function 11(7): 6595-6607.

Li, Z., Lan, Y., Miao, J., Chen, X., Chen, B., Liu, G., Wu, X., Zhu, X. & Cao, Y. 2021. Phytochemicals, antioxidant capacity and cytoprotective effects of jackfruit (Artocarpus heterophyllus Lam.) axis extracts on HepG2 cells. Food Bioscience 41: 100933.

Lin, C.N., Shieh, W.L., Ko, F.N. & Teng, C.M. 1993. Antiplatelet activity of some prenylflavonoids. Biochemical Pharmacology 45(2): 509-512.

Liu, W.J., Ye, L., Huang, W.F., Guo, L.J., Xu, Z.G., Wu, H.L., Yang, C. & Liu, H.F. 2016. p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cellular & Molecular Biology Letters 21: 29.

Ma, J., Guo, W. & Li, C. 2017. Ubiquitination in melanoma pathogenesis and treatment. Cancer Medicine 6(6): 1362-1377.

Makbal, R., Villareal, M.O., Gadhi, C., Hafidi, A. & Isoda, H. 2020. Argania spinosa fruit shell extract-induced melanogenesis via cAMP signaling pathway activation. International Journal of Molecular Sciences 21(7): 2539.

Matsui, M.S., Petris, M.J., Niki, Y., Karaman-Jurukovska, N., Muizzuddin, N., Ichihashi, M. & Yarosh, D.B. 2015. Omeprazole, a gastric proton pump inhibitor, inhibits melanogenesis by blocking ATP7A trafficking. Journal of Investigative Dermatology 135(3): 834-841.

Miki, H., Setou, M., Kaneshiro, K. & Hirokawa, N. 2001. All kinesin superfamily protein, KIF, genes in mouse and human. Proceedings of the National Academy of Sciences 98(13): 7004-7011.

Morrison, I.J., Zhang, J., Lin, J., Murray, J.E., Porter, R., Langat, M.K., Sadgrove, N.J., Barker, J., Zhang, G. & Delgoda, R. 2021. Potential chemopreventive, anticancer and anti-inflammatory properties of a refined artocarpin-rich wood extract of Artocarpus heterophyllus Lam. Scientific Reports 11(1): 6854.

Nguyen, N.T., Nguyen, M.H.K., Nguyen, H.X., Bui, N.K.N. & Nguyen, M.T.T. 2012. Tyrosinase inhibitors from the wood of Artocarpus heterophyllus. Journal of Natural Products 75(11): 1951-1955.

Ochiai, Y., Kaburagi, S., Okano, Y., Masaki, H., Ichihashi, M., Funasaka, Y. & Sakurai, H. 2008. A Zn(II)–glycine complex suppresses UVB-induced melanin production by stimulating metallothionein expression. International Journal of Cosmetic Science 30(2): 105-112.

Oskoueian, E., Karimi, E., Noura, R., Ebrahimi, M., Shafaei, N. & Karimi, E. 2020. Nanoliposomes encapsulation of enriched phenolic fraction from pistachio hulls and its antioxidant, anti-inflammatory, and anti-melanogenic activities. Journal of Microencapsulation 37(1): 1-13.

Pang, J.R., How, S.W., Wong, K.H., Lim, S.H., Phang, S.M. & Yow, Y.Y. 2022. Cholinesterase inhibitory activities of neuroprotective fraction derived from red alga Gracilaria manilaensis. Fisheries and Aquatic Sciences 25(2): 49-63.

Parvez, S., Kang, M., Chung, H.S., Cho, C., Hong, M.C., Shin, M.K. & Bae, H. 2006. Survey and mechanism of skin depigmenting and lightening agents. Phytotherapy Research 20(11): 921-934.

Pearson, D. 1976. Chemical Analysis of Food. Edinburg: Churchill Livingstone.

Plensdorf, S. & Martinez, J. 2009. Common pigmentation disorders. American Family Physician 79(2): 109-116.

Prakash, O., Kumar, R., Mishra, A. & Gupta, R. 2009. Artocarpus heterophyllus (Jackfruit): An overview. Pharmacognosy Reviews 3(6): 353-358.

Price, E.R., Horstmann, M.A., Wells, A.G., Weilbaecher, K.N., Takemoto, C.M., Landis, M.W. & Fisher, D.E. 1998. α-melanocyte-stimulating hormone signaling regulates expression of microphthalmia, a gene deficient in Waardenburg syndrome. Journal of Biological Chemistry 273(49): 33042-33047.

Ramli, A.N.M., Badrulzaman, S.Z.S., Hamid, H.A. & Bhuyar, P. 2021. Antibacterial and antioxidative activity of the essential oil and seed extracts of Artocarpus heterophyllus for effective shelf‐life enhancement of stored meat. Journal of Food Processing and Preservation 45(1): e14993.

Roh, E., Jeong, I.Y., Shin, H., Song, S., Kim, N.D., Jung, S.H., Hong, J.T., Lee, S.H., Han, S.B. & Kim, Y. 2014. Downregulation of melanocyte-specific facultative melanogenesis by 4-hydroxy-3-methoxycinnamaldehyde acting as a cAMP antagonist. Journal of Investigative Dermatology 134(2): 551-553.

Ryu, Y.B., Ha, T.J., Curtis-Long, M.J., Ryu, H.W., Gal, S.W. & Park, K.H. 2008. Inhibitory effects on mushroom tyrosinase by flavones from the stem barks of Morus lhou (S.) Koidz. Journal of Enzyme Inhibition and Medicinal Chemistry 23(6): 922-930.

Saad, H.M., Tan, C.H., Lim, S.H., Manickam, S. & Sim, K.S. 2021. Evaluation of anti-melanogenesis and free radical scavenging activities of five Artocarpus species for cosmeceutical applications. Industrial Crops and Products 161: 113184.

Sangkaew, O. & Yompakdee, C. 2020. Fermented unpolished black rice (Oryza sativa L.) inhibits melanogenesis via ERK, p38, and AKT phosphorylation in B16F10 melanoma cells. Journal of Microbiology and Biotechnology 30(8): 1184-1194.

Seo, E.Y., Jin, S.P., Sohn, K.C., Park, C.H., Lee, D.H. & Chung, J.H. 2017. UCHL1 regulates melanogenesis through controlling MITF stability in human melanocytes. Journal of Investigative Dermatology 137(8): 1757-1765.

Seo, G.Y., Ha, Y., Park, A.H., Kwon, O.W. & Kim, Y.J. 2019. Leathesia difformis extract inhibits α-MSH-induced melanogenesis in B16F10 cells via down-regulation of CREB signaling pathway. International Journal of Molecular Sciences 20(3): 536.

Solano, F., Briganti, S., Picardo, M. & Ghanem, G. 2006. Hypopigmenting agents: An updated review on biological, chemical and clinical aspects. Pigment Cell Research 19(6): 550-571.

Sun, L., Guo, C., Yan, L., Li, H., Sun, J., Huo, X., Xie, X. & Hu, J. 2020. Syntenin regulates melanogenesis via the p38 MAPK pathway. Molecular Medicine Reports 22(2): 733-738.

Taira, N., Katsuyama, Y., Yoshioka, M., Okano, Y. & Masaki, H. 2018. 3-O-Glyceryl-2-O-hexyl ascorbate suppresses melanogenesis by interfering with intracellular melanosome transport and suppressing tyrosinase protein synthesis. Journal of Cosmetic Dermatology 17(6): 1209-1215.

Takizawa, T., Imai, T., Onose, J.I., Ueda, M., Tamura, T., Mitsumori, K., Izumi, K. & Hirose, M. 2004. Enhancement of hepatocarcinogenesis by kojic acid in rat two-stage models after initiation with N-bis(2-hydroxypropyl)nitrosamine or N-diethylnitrosamine. Toxicological Sciences 81(1): 43-49.

Tan, C.H., Sim, D.S.Y., Lim, S.H., Mohd Mohidin, T.B., Mohan, G., Low, Y.Y., Kam, T.S. & Sim, K.S. 2022. Antiproliferative and microtubule-stabilizing activities of two iboga-vobasine bisindoles alkaloids from Tabernaemontana corymbosa in colorectal adenocarcinoma HT-29 cells. Planta Medica 88(14): 1325-1340.

The UniProt, C. 2019. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research 47(D1): D506-D515.

Tsatmali, M., Ancans, J. & Thody, A.J. 2002. Melanocyte function and its control by melanocortin peptides. Journal of Histochemistry and Cytochemistry 50(2): 125-133.

Vázquez-González, Y., Ragazzo-Sánchez, J.A. & Calderón-Santoyo, M. 2020. Characterization and antifungal activity of jackfruit (Artocarpus heterophyllus Lam.) leaf extract obtained using conventional and emerging technologies. Food Chemistry 330: 127211.

Villareal, M.O., Han, J., Ikuta, K. & Isoda, H. 2012. Mechanism of Mitf inhibition and morphological differentiation effects of hirsein A on B16 melanoma cells revealed by DNA microarray. Journal of Dermatological Science 67(1): 26-36.

Wei, B.L., Weng, J.R., Chiu, P.H., Hung, C.F., Wang, J.P. & Lin, C.N. 2005. Antiinflammatory flavonoids from Artocarpus heterophyllus and Artocarpus communis. Journal of Agricultural and Food Chemistry 53(10): 3867-3871.

Wu, M., Hemesath, T.J., Takemoto, C.M., Horstmann, M.A., Wells, A.G., Price, E.R., Fisher, D.Z. & Fisher, D.E. 2000. C-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes and Development 14(3): 301-312.

Zheng, Y., Lee, E.H., Lee, S.Y., Lee, Y., Shin, K.O., Park, K. & Kang, I.J. 2023. Morus alba L. root decreases melanin synthesis via sphingosine-1-phosphate signaling in B16F10 cells. Journal of Ethnopharmacology 301: 115848.

 

*Corresponding author; email: simkaeshin@um.edu.my

 

 

 

previous