Sains Malaysiana 52(2)(2023): 547-561
http://doi.org/10.17576/jsm-2023-5202-17
Methylene Blue Adsorption by Acid Post-Treated Low Temperature Biochar
Derived from Banana (Musa acuminata) Pseudostem
(Penjerapan Metilena Biru oleh Bioarang Bersuhu Rendah
Selepas Dirawat Asid Dihasilkan daripada Batang Pseudo Pisang (Musa acuminata))
NOOR HALINI BAHARIM*, FRIDELINA SJAHRIR,
RAHMAD MOHD TAIB, NORAZLINA IDRIS & TUAN AZMAR TUAN DAUD
Department of Science and
Biotechnology, Faculty of Engineering and Life Sciences, Universiti Selangor, Jalan Timur Tambahan, 45600 Bestari Jaya, Selangor Darul Ehsan, Malaysia
Received: 17 July 2022/Accepted: 19
December 2022
Abstract
The adsorption of methylene blue dye solution using
low temperature biochar (PSB) and acid post-treated biochar (PT-PSB) derived
from banana (Musa acuminata) pseudostem was investigated. The raw material was
oven-dried at 105 °C for 24 h and then carbonized via slow pyrolysis at a low
temperature of 300 °C for 1 h. The biochar was further treated with 1.0 M HCl
for 24 h. At room temperature, batch adsorption experiments were conducted to
determine the removal efficiency of methylene blue at different parameters;
solution pH (3-10), adsorbent dosage (0.05-0.30 g) and initial concentration
(25-150 mg/L). The results exhibited that the highest removal efficiency of
methylene blue using PSB was 96.6% at optimum solution pH 6 with the adsorbent
dosage of 0.20 g. Nevertheless, the better removal efficiency of methylene blue
using PT-PSB was identified (99.3%) at optimum solution pH 7 and adsorbent
dosage of 0.25 g. The initial concentration of 25 mg/L showed the maximum
removal efficiency for both PSB and PT-PSB. The adsorption isotherm analysis
showed that both PSB and PT-PSB were better fitted with the Freundlich isotherm
model which indicates multilayer adsorption onto the heterogeneous surface of
the adsorbents. Kinetic data showed that the adsorption of methylene blue onto
PSB and PT-PSB was well fitted by the pseudo-second order model, indicating
chemical adsorption. Banana pseudostem showed great potential to be used as an
efficient low-cost and environmentally friendly adsorbent for the removal of
methylene blue from aqueous solution.
Keywords: Acid
post-treated biochar; adsorption; banana pseudostem; methylene blue
Abstrak
Penjerapan larutan pewarna metilena biru menggunakan
bioarang bersuhu rendah (PSB) dan bioarang selepas dirawat asid (PT-PSB) yang
berasal daripada batang pseudo pisang (Musa acuminata) dikaji. Bahan
mentah dikeringkan dengan ketuhar pada suhu 105 °C selama 24 jam dan seterusnya
dibakar melalui pirolisis perlahan pada suhu rendah 300 °C selama 1 jam.
Bioarang seterusnya dirawat dengan 1.0 M HCl untuk 24 jam. Pada suhu bilik, uji
kaji penjerapan kumpulan dijalankan untuk menentukan kecekapan penyingkiran
metilena biru pada parameter pemboleh ubah yang berbeza; pH larutan (3-10), dos
penjerap (0.05-0.30 g) dan kepekatan awal (25-150 mg/L). Keputusan menunjukkan
kecekapan penyingkiran tertinggi metilena biru menggunakan PSB adalah 96.6%
pada pH larutan optimum 6 dengan dos penjerap 0.20 g. Walau bagaimanapun,
kecekapan penyingkiran metilena biru yang lebih baik menggunakan PT-PSB
ditentukan (99.3%) pada pH larutan optimum 7 dan dos penjerap 0.25 g. Kepekatan
awal 25 mg/L menunjukkan kecekapan penyingkiran yang maksimum bagi kedua-dua
PSB dan PT-PSB. Analisis isoterma penjerapan menunjukkan kedua-dua PSB dan
PT-PSB adalah lebih berpadanan dengan model isoterma Freundlich yang
menunjukkan penjerapan berbilang lapisan ke permukaan heterogen penjerap. Data
kinetik menunjukkan penjerapan metilena biru ke PSB dan PT-PSB adalah sangat
berpadanan dengan model tertib kedua pseudo, menunjukkan penjerapan kimia. Batang pseudo pisang
berpotensi besar digunakan sebagai penjerap berkos rendah yang cekap dan mesra
alam untuk penyingkiran metilena biru daripada larutan akues.
Kata kunci: Batang pisang pseudo; bioarang selepas dirawat asid; metilena biru; penjerapan
References
Abd-Elhamid, A.I., Emran,
M., El-Sadek, M.H., El-Shanshory,
A.A., Soliman, H.M.A., Akl, M.A. & Rashad, M.
2020. Enhanced removal of cationic dye by eco-friendly activated biochar
derived from rice straw. Applied Water Science 10(45). https://doi.org/10.1007/s13201-019-1128-0
Ahmad,
A., Khan, N., Giri, B.S., Chowdhary, P. &
Chaturvedi, P. 2020. Removal of methylene blue dye using rice husk, cow dung
and sludge biochar: Characterization, application, and kinetic studies. Bioresource
Technology https://doi.org/10.1016/j.biortech.2020.123202
Al‐Mokhalelati, K.,
Al‐Bakri, I. & Al Shibeh Al Wattar, N. 2021. Adsorption of methylene blue onto
sugarcane bagasse‐based adsorbent materials. Journal of Physical
Organic Chemistry 34(7). https://doi:10.1002/poc.4193
Ali,
H. 2010. Biodegradation of synthetic dyes-a review. Water Soil Pollution 213: 251-273. https://doi.org/10.1007/s11270-010-0382-4
Amin, M.T., Alazba, A.A.
& Shafiq, M. 2019. Comparative study for adsorption of methylene blue dye
on biochar derived from orange peel and banana biomass in aqueous solutions. Environmental
Monitoring and Assessment 191(12): 735. https://doi.org/10.1007/s10661-019-7915-0
Amin, N.K. 2009. Removal of
direct blue-106 dye from aqueous solution using a new activated carbons
developed from pomegranate peel: Adsorption equilibrium and kinetics. Journal
of Hazardous Materials 165: 52-62.
Aysan, H., Edebali, S., Ozdemir, C., Karakaya, M.C. & Karakaya, N. 2016. Use of chabazite, a naturally
abundant zeolite, for the investigation of the adsorption kinetics and
mechanism of methylene blue dye. Microporous Mesoporous Material 235:
78-86.
Baharim,
N.H., Sjahrir, F., Taib,
R.M., Idris, N., Daud, T.A.T., Solleh,
M.R.M. & Radin, H. 2022. Removal of copper ion
from aqueous solution using biosorbent derived from
banana pseudo stem. Selangor Science and Technology Review 6(2): 44-50.
Bhatia, D., Datta, D., Joshi, A., Gupta, S. & Gote, Y. 2018. Adsorption study for the separation of isonicotinic acid from aqueous solution n using activated
carbon/Fe3O4 composites. Journal of Chemical and
Engineering Data 63: 436-445.
Chahm, T., Martins, B.A. &
Rodrigues, C.A. 2018. Adsorption of methylene blue and crystal violet on
low-cost adsorbent: Waste fruits of Rapanea ferruginea (ethanol-treated
and H2SO4-treated). Environmental Earth Sciences 77(13).
https://doi:10.1007/s12665-018-76812
Chen, W., Chen, F., Ji, B.,
Zhu, L. & Song, H. 2019. Insights into the mechanism of methylene blue
removed by novel and classic biochars. Water
Science and Technology 79(8):
1561-1570.
Chen, Y., Lin, Y., Ho, S.,
Zhou, Y. & Ren, N. 2018. Highly efficient adsorption of dyes by biochar
derived from pigments extracted macroalgae pyrolyzed at different temperature. Bioresources
Technology 259: 104-110.
Choi,
H.J. & Yu, S.W. 2019. Biosorption of methylene blue from aqueous solution
by agricultural bioadsorbent corncob. Environmental
Engineering Research 24(1): 99-106.
Crini,
G. 2006. Non-conventional low-cost adsorbents for dye removal: A review. Bioresource
Technology 97(9): 1061-1085. https://doi.org/10.1016/j.biortech.2005.05.001
Da Silva, J.S., da Rosa, M.P., Beck, P.H., Peres,
E.C., Dotto, G.L., Kessler, F. & Grasel, F.S. 2018. Preparation of an alternative adsorbent
from Acacia mearnsii wastes through acetosolv method and its application for dye removal. Journal
of Cleaner Production 180: 386-394.
Deng, H., Li, Y.F., Tao, S.Q., Li, A.Y., Li, Q.Y.
& Hu, L.N. 2021. Efficient adsorption capability of banana and cassava
biochar for malachite green: Removal process and mechanism exploration. Environmental
Engineering Research 27(3). https://doi.org/10.4491/eer.2020.575
Hariz, A.R.M., Azlina,
W.A.K.G.W., Fazly, M.M., Norziana,
Z.Z., Ridzuan, M.D.M., Tosiah,
S. & Ain, A.B.N. 2015. Local practices for production of rice husk biochar
and coconut shell biochar: Production methods, product characteristics,
nutrient and field water holding capacity. Journal of Tropical Agriculture
and Food Science 43(1): 91-101.
Hu, Z.P. & Gao, Z.M. 2018.
High-surface-area activated red mud for efficient removal of methylene blue
form wastewater. Adsorption Science and Technology 36(1-2): 62-79.
Jadhav, S.K. & Thorat,
S.R. 2022. Adsorption isotherm study of crystal violet dye onto biochar prepared
from agriculture waste. Oriental Journal of Chemistry 38(2): 475-481.
Kapoor, R.T., Rafatullah,
M., Siddiqui, M.R., Khan, M.A. & Sillanpää, M.
2022. Removal of reactive black 5 dye by banana peel biochar and evaluation of
its phytotoxicity on tomato. Sustainability 14: 4176. https://doi.org/10.3390/su14074176
Karim, A.A., Kumar, M., Mohapatra, S., Panda, C.R.
& Singh, A. 2015. Banana peduncle biochar: Characteristics and adsorption
of hexavalent chromium from aqueous solution. International Research Journal
of Pure & Applied Chemistry 7(1): 1-10.
Katheresan,
V., Kansedo, J. & Lau, S.Y. 2018. Efficiency of
various recent wastewater dye removal methods: A review. Journal of
Environmental Chemical Engineering 6:
4676-4697.
Khataee, A.R., Vafaei, F. & Jannatkhah, M.
2013. Biosorption of three textile dyes from contaminated water by filamentous
green Algal spirogyra sp.:
Kinetic, isotherm and thermodynamic studies. International Biodeterioration
and Biodegradation 83: 33-40.
Kim, H., Ko, R.A., Lee, S.
& Chon, K. 2020. Removal efficiencies of manganese and iron using pristine
and phosphoric acid pre-treated biochars made from
banana peels. Water 12(4): 1173. https://doi.org/10.3390/w12041173
Kumar, P.S., Sivaprakash, S.
& Jayakumar, N. 2017. Removal of methylene blue dye from aqueous solutions
using Lagerstroemia indica seed (LIS)
activated carbon. International Journal of Materials Science 12(1):
107-116.
Kumar, U., Vibhute,
B. & Parikh, S. 2021. Experimental study of adsorption efficiency of
methylene blue dye by using banana leaf biochar as an adsorbent. Journal of
Physics: Conference Series 1979: 012003. https://doi:10.1088/1742-6596/1979/1/012003
Kumar, U., Vibhute, B.,
Sharma, N. & Sahay, A. 2022. Efficient removal of methylene blue dye by
alkaline-treated banana stem biochar through adsorption method. Applied
Ecology and Environmental Sciences 10(4): 236-243.
Li, Y., Zhang, Y., Zhang, Y., Wang, G., Li, S., Han,
R. & Wei, W. 2018. Reed biochar supported hydroxyapatite nanocomposite:
Characterization and reactivity for methylene blue removal from aqueous media. Journal
of Molecular Liquids 263: 53-63.
Liu, S., Li, J., Xu, S., Wang, M., Zhang, Y. & Xue, X. 2019. A modified method for enhancing adsorption
capability of banana pseudostem biochar towards
methylene blue
at low temperature. Bioresource Technology 282: 48-55. https://doi.org/10.1016/j.biortech.2019.02.092
Mahdi, Z., Hanandeh, A.E.
& Yu, Q.J. 2019. Preparation, characterization and application of surface
modified biochar from date seed for improved lead, copper and nickel removal
from aqueous solutions. Journal of Environmental Chemical Engineering 7:
103379. https://doi.org/10.1016/j.jece.2019.103379
Nayak, A., Bhushan, B., Gupta, V. & Sharma, P.
2017. Chemically activated carbon from lignocellulosic wastes for heavy metal
wastewater remediation: Effect of activation conditions. Journal of Colloid
Interface Science 493: 228-240.
Pan, Y., Wang, Y., Zhou, A., Wang, A., Wu, Z., Lv, L., Li, X., Zhang, K. & Zhu, T. 2017. Removal of
azo dye in an up-flow membrane-less bioelectrochemical system integrated with bio-contact oxidation reactor. Chemical Engineering
Journal 326: 454-461. https://doi.org/10.1016/j.cej.2017.05.146
Praveen,
S., Bhagavathi, P.T., Gokulan,
R. & Jegan, J. 2020. Evaluation of the adsorption
capacity of Cocos nucifera shell derived biochar for basic dyes
sequestration from aqueous solution. Energy Sources, Part A: Recovery,
Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2020.1800142
Saini, R.D. 2017. Textile organic dyes: Polluting
effects and elimination methods from textile waste water. International
Journal of Chemical Engineering Research 9(1): 121-136.
Shoukat, S., Bhatti, H.N., Iqbal, M. &
Noreen, S. 2017. Mango stone biocomposite preparation
and application for crystal violet adsorption: A mechanistic study. Microporous
and Mesoporous Materials 239: 180-189.
Tang, R.,
Dai, C., Li, C., Liu, W., Gao, S. & Wang, C. 2017. Removal of methylene
blue from aqueous solution using agricultural solution using agricultural
residue walnut shell: Equilibrium, kinetic and thermodynamic studies. Journal
of Chemistry 4: 1-10. https://doi.org/10.1155/2017/8404965
Tharaneedhar,
V., Kumar, P.S., Saravanan, A., Ravikumar, C. & Jaikumar,
V. 2016. Prediction and interpretation of adsorption parameters for the
sequestration of methylene blue dye from aqueous solution using microwave
assisted corncob activated carbon. Sustainable Materials and Technologies 11: 1-11.
Yao, X., Ji, L., Guo, J., Ge,
S., Lu, W., Cai, L., Wang, Y., Song, W. & Zhang, H. 2020. Magnetic
activated biochar nanocomposites derived from wakame and its application in
methylene blue adsorption. Bioresource Technology 302: 122842. https://doi:10.1016/j.biortech.2020.12284
Yuan, X., Zhuo, S.P., Xing,
W., Cui, H.Y., Dai, X.D., Liu, X.M. & Yan, Z.F. 2007. Aqueous dye
adsorption on ordered mesoporous carbons. Journal of Colloid and Interface
Science 310(1): 83-89.
Zaman, C.Z., Pal, K., Yehye,
W.A., Sagadevan, S., Shah, S.T., Adebisi, G.A., Marliana, E., Rafique, R.F. & Johan, R. 2017.
Pyrolysis: A sustainable way to generate energy from waste. In: Pyrolysis,
edited by Mohamed Samer. London: Intech Open Science. pp. 3-36.
Zhou, Y., Hu, Y., Huang, W., Cheng, G., Cui, C. &
Lu, J. 2018. A novel amphoteric B-cyclodextrin-based adsorbent for simultaneous
removal of cationic/anionic dyes and bisphenol A. Chemical Engineering
Journal 341: 47-57. https://doi.org/10.1021/acs.est.5b02227
*Corresponding author; email: halini@unisel.edu.my